Extreme climatic events (ECEs) such as hurricanes have been hypothesized to be a major driving force of natural selection. Recent studies argue that, following strong hurricane disturbance, Anolis lizards in the Caribbean undergo selection for traits such as longer forelimbs or smaller body sizes that improve their clinging ability to their substrates increasing their chances of surviving hurricane wind gusts. Some authors challenge the generalization of this hypothesis arguing that other mechanisms may explain these phenotypic changes or that they may not necessarily be generalizable across systems. To address this issue, we compared body size and relative forelimb length of Anolis gundlachi, a trunk–ground anole living in closed-canopy forests in Puerto Rico, before, four months after, and 15 months after Hurricanes Irma and Maria in 2017. Overall, our results show no clear evidence of a temporal decrease in body size or increase forelimb length (relative to body size) challenging the generalizability of the clinging ability hypothesis. Understanding how animals adapt to ECE is an emerging field. Still, we are quickly learning that this process is complex and nuanced.