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Abstract
Soil health initiatives have categorized assays for enzyme activities (EAs) that mea-

sure p-nitrophenol and ester-linked fatty acid methyl ester (EL-FAME) as Tier 2 indi-

cators for biological activity and community structure analysis, respectively. Quan-

titative polymerase chain reaction (qPCR) assays of functional and taxonomic com-

munities are emerging Tier 3 indicators. To facilitate comparisons of soil biological

health between research groups that may employ different methods, we applied these

current and emerging indicators to semiarid soils from the Texas High Plains sampled

in the growing season and postharvest from 2014 through 2018. Microbial groups via

EL-FAME markers and EAs were strongly correlated (r > .79) with qPCR assays of

equivalent taxonomic and functional genes. To further quantify the predictive power

of these relationships, we modeled several genes as a function of EA or EL-FAME

markers, combined with other related covariates (e.g., soil texture, pH, irrigation, and

soil organic C [SOC]) using a generalized linear model. The latter was trained using

data from 2014, which was an average year in terms of temperature and precipitation

for the region. Subsequently, the model was tested making predictions for 2015–

2018, which represented high variability in climatic conditions, ensuring a thorough

assessment of its predictive power. In most cases, soil texture, SOC, and Tier 2 indica-

tors were identified as moderate to strong predictors of the biological responses. Our

results suggest that the different approaches for assessing either function or commu-

nity in these semiarid soils were highly comparable and provided similar information

on how microbial communities were responding to both management and climate.

Abbreviations: AMF, arbuscular mycorrhizal fungi; EA, enzyme activity;
EL-FAME, ester-linked fatty acid methyl ester; FAME, fatty acid methyl
ester; GWC, gravimetric water content; PB, percent bias; PLFA,
phospholipid fatty acid; PNP, p-nitrophenol; qPCR, quantitative polymerase
chain reaction; RSE, relative squared error; SiC, silt and clay; SOC, soil
organic carbon; SOM, soil organic matter; ST, soil temperature; TN, total
nitrogen.
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1 INTRODUCTION

There is increasing interest in identifying soil health indices
that can be used to assess how different management prac-
tices impact soil functions, including C sequestration, crop
productivity, erosion, nutrient cycling, and water storage. To
achieve this outcome, soil physical, chemical, and biologi-
cal properties need to be evaluated using methods that are
meaningful in an agro-ecosystems context, and sensitive to
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variation in agricultural management. Soil health initiatives
including the Soil Health Institute, the USDA–NRCS, and the
scientific community from several institutions have identified
a set of Tier 1 indicators, which are a group of properties
(primarily physicochemical parameters such as organic matter
and pH) that respond to specific management strategies, have
defined thresholds (i.e., rankings of poor to good) and have
been benchmarked nationally (Stewart et al., 2018). However,
several studies have suggested that biological and biochemical
indicators might be more useful when assessing soil health,
due both to their higher sensitivity and to their relationship
with soil microbial communities and soil processes (Franken-
berger & Dick, 1983; Stott, Andrews, Liebig, Wienhold, &
Karlen, 2009; Trasar-Cepeda, Leirós, Seoane, & Gil-Sotres,
2000).

Soil health assessments require different methods to mea-
sure changes in microbial communities in relation to the
complex interactions of management practices and climate
variability. Soil microorganisms regulate biogeochemical
transformations and improve soil structure by their role in
aggregate formation. Thus, their abundance, diversity, and
activities are essential to many functions provided by soils
(Bardgett & van der Putten, 2014; Lehman et al., 2015).
Many of the current soil biological indicators are considered
Tier 2 and, although recommended for soil health assess-
ments, require further research before users can have the same
level of confidence in their use and interpretation as those
obtained from Tier 1. Currently, EAs and ester-linked fatty
acid methyl ester (EL-FAME) assays are accepted as Tier
2 indicators of biological activity and community structure,
respectively. Several EAs have been used for soil health
assessments; however, β-glucosidase, β-glucosaminidase,
alkaline or acid phosphatase, and arylsulfatase have been
identified as core EAs due to their important roles in C, N, P,
and S cycling, respectively (Acosta-Martínez, Pérez-Guzmán,
Veum, Núnes, & Dick, 2021; Stott, 2019). An enzyme assay
measures the rate of reaction according to its released prod-
uct (e.g., p-nitrophenol [PNP]), and reflects the amount of the
enzyme present (Tabatabai & Dick, 2002). Enzyme assays,
however, are only valid and reproducible across investiga-
tions if the reaction occurs under optimal conditions, which
include excess substrate concentrations, optimum tempera-
ture and pH, and other possible co-factors. Consequently,
since EA assays are performed under controlled conditions
and cannot distinguish between activities associated with
viable cells (intracellular) or extracellular enzymes, they mea-
sure “potential activity.” Nonetheless, EAs are sensitive in
detecting changes associated with cropping systems (Bandick
& Dick, 1999; Cotton, Acosta-Martínez, Moore-Kucera,
& Burow, 2013; Schutter & Dick, 2002; Veum, Goyne,
Kremer, Miles, & Sudduth, 2014), tillage (Balota, Kanashiro,
Colozzi Filho, Andrade, & Dick, 2004; Cotton & Acosta-

Core Ideas
∙ FAME markers, EAs, and genes via qPCR pro-

vided a similar response to climate variability.
∙ β-glucosidase activity had a strong correlation with

genes of equivalent function.
∙ FAME markers and soil physicochemical proper-

ties were accurate predictors of genes.
∙ Tier 2 and 3 indicators of soil health provided a

comprehensive overview of soil biology.

Martínez, 2018; Dick, 1984), and climate variability (Acosta-
Martínez, Moore-Kucera, Cotton, Gardner, & Wester, 2014;
Pérez-Guzmán, Acosta-Martínez, Phillips, & Mauget, 2020).

Fatty acid profiling methods such as phospholipid fatty acid
(PLFA) and EL-FAME have been commonly used for char-
acterizing soil microbial community structure by extracting
fatty acids from the microbial cell membrane, and converting
them into fatty acid methyl esters (FAMEs) using an alka-
line reagent (e.g., Acosta-Martínez, Mikha, & Vigil, 2007;
Frostegård & Bååth, 1996; Moore-Kucera & Dick, 2008;
Schutter & Dick, 2002; Zelles, 1999). Additionally, these
methods allow for the identification of broad groups such
as Gram-positive, Gram-negative, Actinobacteria, and sapro-
phytic fungi (Willers, Jansen van Rensburg, & Claassens,
2015; Zelles, 1999). Recently, Li, Cano, Acosta-Martínez,
Veum, and Moore-Kucera (2020) compared PLFA and EL-
FAME using 172 soil samples representing a wide range of
physicochemical properties, and provided detailed informa-
tion regarding equipment, costs, practical advantages, and
results. For example, although certain FAME markers may
be of plant origin, leading to slight overestimation of some
groups, total FAMEs have been used as a proxy of micro-
bial biomass (e.g., Li et al., 2018; Li et al., 2020). Also,
since phospholipids are easily degraded upon cell death, fatty
acids derived from PLFA analysis are thought to represent
the viable microbial community (Zelles, 1999). However, EL-
FAME has become popular due to its simplicity and because
it is less time consuming than PLFA analysis (Miura, Makoto,
Niwa, Kaneko, & Sakamoto, 2017; Schutter and Dick, 2000).
Additionally, the extraction in EL-FAME is directly from soil
samples, and thus, may contain other lipid fractions includ-
ing neutral lipids (Zelles, 1999; Miura et al., 2017), which
give the advantage of evaluating the arbuscular mycorrhizal
fungi (AMF) marker 16:1ω5c (Cotton & Acosta-Martínez,
2018; Li et al., 2020). The EL-FAME method has been shown
to be sensitive at detecting changes in microbial communi-
ties under different management practices and regions (e.g.,
Mbuthia et al., 2015; Li et al., 2018), and after natural climatic
disturbances such as drought, hurricanes, and extreme tem-
peratures (Bérard, Bouchet, Sévenier, Pablo, & Gros, 2011;
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T A B L E 1 Quantitative polymerase chain reaction assays for genes associated with taxonomic groups and functional processes

Target genes Function
EC
number

Nutrient
pool

Microbial group; main
targets Reference

Bacterial 16S taxonomic classification N/A N/A bacteria Watanabe, Kodama,
& Harayama,
2001

Fungal 18S taxonomic classification N/A N/A fungi Vanio & Hantula,
2000

Laccase multicopper polyphenolic C breakdown 1.10.3.2 C bacteria and fungi Kellner et al., 2007

Bglu (β-glucosidase) breakdown of oligosaccharides 3.2.1.21 C bacteria Cañizares, Benítez,
& Ogunseitan,
2011

apr (alkaline
metallopeptidase)

SON mineralization 3.4.24 N bacteria, primarily
Gammaproteobacteria

Bach et al., 2001

npr (neutral
metallopeptidase)

SON mineralization 3.4.25 N bacteria, primarily Bacilli Bach et al., 2001

narG (nitrate reductase) ammonification/denitrification 1.7.5.1 N bacteria, Proteobacteria Gregory,
Karakas-Sen,
Richardson, &
Spiro, 2000

nrfA (nitrite reductase) dissimilatory nitrate reduction 1.7.2.2 N bacteria Welsh,
Chee-Sanford,
Connor, Löffler,
& Sanford, 2014

nxrA (nitrite
oxidoreductase)

nitrite oxidation 1.7.99.4 N bacteria, Nitrobacter Poly, Wertz,
Brothier, &
Degrange, 2008

phoD (alkaline
phosphatase)

P mineralization 3.1.3.1 P primarily bacteria,
Alphaproteobacteria

Ragot et al., 2015

Note. EC, enzyme commission; N/A, not applicable; SON, soil organic N.

Cantrell et al., 2014; Pérez-Guzmán et al., 2020). Moreover,
combining fatty acid profiling with EAs allows for more
comprehensive soil biological health assessments, as changes
in microbial community detected via FAME markers have
been positively correlated with changes in several EA indica-
tors of biogeochemical cycling and soil organic matter (SOM)
dynamics (Acosta-Martínez et al., 2007; Cotton et al., 2013).

Quantitative polymerase chain reaction (qPCR) assays tar-
geting either functional or taxonomic components of soil
microbial communities are promising Tier 3 indicators that
may allow for rapid quantitative assessment of both biogeo-
chemical cycling processes and phylogenetic groups (Fierer,
Jackson, Vilgalys, & Jackson, 2005; Stone et al., 2015;
Thiele-Bruhn et al., 2020). Current qPCR indicators typically
use taxa-specific primers to target phylogenetically discrete
processes performed by organisms with very defined niche
preferences (Wessén & Hallin, 2011). For example, genes
associated with nitrification, including archaeal and bacterial
ammonium monooxygenase genes, have been used as indi-
cators of soil health shifts in response to xenobiotic contam-
ination (Brandt et al., 2015; Mundepi, Cabrera, & Norton,

2019), soil reclamation (Dose et al., 2015), and agricultural
management (Bhowmik, Fortuna, Cihacek, Bary, & Cogger,
2016; Ouyang, Reeve, & Norton, 2018). Over the past decade,
the increasing use of more degenerate primers in qPCR has
allowed researchers to analyze phylogenetically diverse nutri-
ent cycling processes and broader microbial groups (e.g.,
Table 1 and references therein). Many of these qPCR assays
evaluate functions and groups that are being measured in
current Tier 2 soil health assays (i.e., via EL-FAME and
EA), but there is limited information on whether the dif-
ferent approaches provide similar information on soil health
(Ouyang et al. (2018), Thiele-Bruhn et al., 2020). One of
the few such studies performed to date evaluated chitinolytic,
proteolytic, and ureolytic EA, and related gene abundance in
an organic farming system. The researchers found that direct
correlative linkages generally decreased as functional redun-
dancy associated with the biogeochemical cycling process
increased, and that gene abundance itself did not improve pre-
dictive models of EA.

Previously, our team evaluated the effect of climate vari-
ability on microbial community structure via the EL-FAME
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T A B L E 2 Soil properties of five agricultural sites (0–10 cm) for all sampling times 2014–2018

Sites
Property 1 2 3 4 5

Physicochemical properties
Soil series Amarillo Amarillo Olton Portales Spur

pH 7.6 7.0 8.3 8.4 8.2

Sand (%) 69 58 52 38 32

Silt (%) 14 21 21 30 32

Clay (%) 17 21 27 32 52

SOC (g kg–1 soil) 3.5 4.4 5.4 11 19.4

TN (g kg–1 soil) 0.4 0.5 0.6 1.1 2.2

Microbial groups via FAME
nmol g–1 soil

Actinobacteria 4.8b 5.5b 5.5b 13.9a 19.6a

Gram negative 8.9b 7.9b 8.1b 21.8a 27.8a

Gram positive 10.2b 12.1b 10.9b 26.1a 34.4a

AMF 2.1c 3.2b 2.2c 5.0a 5.0a

Saprophytic fungi 14.6b 13.8b 13.4b 31.1a 31.0a

Genes
copies g–1 soil

apr 1.4 × 105b 1.4 × 105b 1.6 × 105b 6.7 × 105b 1.1 × 106a

npr 2.2 × 105a 1.8 × 105a 1.4 × 105ab 1.2 × 105b 1.0 × 105b

laccase 6.9 × 106b 6.2 × 106b 8.1 × 106b 2.2 × 107b 3.5 × 107a

Note. AMF, arbuscular mycorrhizal fungi; SOC, soil organic C; TN, total soil N. Amarillo (fine-loamy, mixed, superactive, thermic Aridic Paleustalf); Olton (fine, mixed
superactive thermic Aridic Paleustolls); Portales (fine-loamy, mixed superactive thermic Aridic Calciustolls); Spur (fine loamy, mixed, superactive thermic Fluventic
Haplustoll). Values represent the mean of n = 30. Numbers within a row that do not share a letter are significantly different at p < .001.

method, and overall activity via the geometric mean of
four EAs in five semiarid soils under cotton (Gossypium
hirsutum L.) production. Although sites varied greatly in soil
textural class (e.g., from sandy loam to clay), and differed in
management (irrigation vs. dryland), the evaluated parameters
responded similarly to extreme temperatures in 2016 after a
year of record precipitation (Pérez-Guzmán et al., 2020). We
found significant decreases in microbial community structure
and activities under low soil moisture associated with low pre-
cipitation and high soil temperatures. Our current study builds
upon this previous work by comparing Tier 2 indicators and
emerging biological indicators such as qPCR genes for assess-
ing soil health from these sites. Along with this comparative
analysis, the objective was to test the predictive accuracy of
microbial groups via EL-FAME and EAs (β-glucosidase, β-
glucosaminidase, and alkaline phosphatase) with genes that
provide similar taxonomic and functional information (e.g., C,
N, and P cycling) using qPCR. To achieve this, we developed
and tested a predictive model of soil physicochemical prop-
erties, abiotic factors, and biological responses. The primary
goal was to facilitate comparisons among research laborato-
ries that may employ different biological methods while con-
tributing to the expansion of databases focused on soil health.

2 MATERIALS AND METHODS

2.1 Study sites, soil sampling, and analyses

Soil samples were taken from 2014 to 2018 in five producer
fields located in the Southern High Plains in Texas. This
warm, semiarid region is characterized by mild winters and
low precipitation (<500 mm annually). However, the five
years evaluated in this study were among the 10 warmest years
on the planet since 1880 (NOAA, 2020), and 2015 brought
record precipitation (693 mm) to the region. The fields have
been under tilled cotton and represent a wide range of soil
textural classes characteristic of the region (Table 2). Sites 1
and 2 are Amarillo (fine-loamy, mixed, superactive, thermic
Aridic Paleustalf). Sites 3, 4, and 5 are Olton (fine, mixed,
superactive, thermic Aridic Paleustolls), Portales (fine-loamy,
mixed, superactive, thermic Aridic Calciustolls), and Spur
(fine-loamy, mixed, superactive, thermic Fluventic Haplus-
tolls), respectively. The sites were sampled on the same days
each year, once during the growing season and once posthar-
vest (Supplemental Table S1). Samples were collected from
three randomly selected locations along a 100-m transect. At
each sampling location, three soil samples (0–10 cm) were
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collected and composited. Soils were stored in a cooler on ice
for transport to the laboratory, where they were sieved (<5
mm), and subsampled for chemical (air dried) and biologi-
cal (4 ˚C and −20 ˚C) analyses. Soil organic C and total N
were analyzed on air-dried soils by automated dry combustion
using a Leco TruSpec CN in a commercial lab (Ward Labo-
ratories). Soil pH was measured in air-dried soils using 1:2.5
soil/water ratio using a combination glass electrode (Denver
Instrument), and soil texture was determined using the pipette
method (Miller & Miller, 1987).

2.2 EL-FAME

Soil microbial community composition was characterized by
the EL-FAME method described by Schutter and Dick (2000).
Three samples per site were analyzed using 3 g of field-
moist soil. First, samples were incubated at 37 ˚C with 0.2 M
methanolic KOH for 1 h. Then, 1.0 M acetic acid was added
to neutralize the solution, and FAMEs were partitioned into
an organic phase by adding hexane followed by centrifuga-
tion. Subsequently, the hexane layer was evaporated under N2,
and FAMEs were dissolved in 1:1 hexane/methyl-tert butyl
ether. Lastly, samples were analyzed in a 6890N GC (Agilent
Technologies) equipped with a flame ionization detector and
a fused silica capillary column (25 m × 0.32 mm × 0.25 μm)
using ultra high purity H2 as the carrier gas. The temperature
program was ramped from 170 to 250 ˚C at 5 ˚C min–1. The
FAMEs were identified, and their relative peak areas deter-
mined with the Microbial ID, Inc., PLFA naming software
(Microbial ID).

The FAMEs nomenclature includes the number of C atoms,
followed by a colon, the number of double bonds, and the
position of the first double bond from the methyl (ω) end of
the molecule. Cis isomers are indicated by c, while methyl
groups are indicated by Me. Branched fatty acids are indi-
cated by the prefixes i (iso) and a (anteiso). The sum of all
FAME biomarkers present in a sample was used as proxy
of microbial abundance. Additionally, FAMEs were also
summed into broad microbial groups such as Actinobacteria
(10Me16:0, 10Me17:0, 10Me18:0), Gram-positive (Gram+;
i15:0, a15:0, i16:0, i17:0, a17:0), Gram-negative (Gram−; cy
17:0, cy 19:0ω8c, 18:1 ω7c), saprophytic fungi (18:1 ω9c,
18:2 ω6c) and arbuscular mycorrhizal fungi (AMF; 16:1 ω5c)
as described in the literature (Frostegård & Bååth, 1996;
Moore-Kucera & Dick, 2008; Olsson, Bååth, Jakobsen, &
Söderström, 1995; Zelles, 1999).

2.3 Potential enzyme activity

The EAs of β-glucosidase, β-glucosaminidase, and alkaline
phosphatase involved in C, C and N, and P cycling respec-

tively, were analyzed using p-nitrophenyl derivative substrate
concentrations and assay conditions as previously reported
(Dick, 2011; Eivazi & Tabatabai, 1977; Parham & Deng,
2000; Tabatabai, 1994). The protocols were modified to use
0.5 g (sieved <5 mm) air-dried soil instead of 1 g, and solu-
tions were reduced by half maintaining the soil/solution pro-
portions of the original assays (Acosta-Martínez & Cotton,
2017). Toluene was omitted to reduce environmental con-
cerns, and because its elimination does not affect EAs during 1
h incubation (Acosta-Martínez & Tabatabai, 2011; Tabatabai,
1994). All EAs were analyzed in duplicates with one control,
to which substrate was added after the incubation step. The
product PNP was determined colorimetrically at 400 nm in a
visible spectrophotometer (Thermo Scientific Evolution 60S).
Activity values from the control samples were subtracted from
the experimental sample value.

2.4 Microbial community and function via
qPCR

DNA was extracted in duplicate from field moist soils using
Qiagen DNeasy PowerSoil HTP Kit (Qiagen Inc.) according
to the manufacturer’s instructions with the following modi-
fication: samples were heated at 65 ˚C for 10 min prior to
bead-beating. DNA quality was visualized on a 1.4% agarose
gel, quality and quantity were verified by spectrophotometer
(NanoDrop One), and then duplicate extractions were pooled.
Pooled DNA was then quantified using both broad range and
high sensitivity fluorescence-based assays (Quant-iT dsDNA
BR kits, Life Technologies), normalized to a working con-
centration of 3 ng μl–1, and then requantified using high sen-
sitivity assays (Quant-iT dsDNA HS kits, Life Technologies)
to verify the final concentration in each qPCR assay. Micro-
bial community function was assessed by quantitative PCR
(qPCR) of key genes involved in C, N, and P transformation,
overall bacterial and fungal abundance was proxied by qPCR
of 16S rRNA and 18S gene regions (Table 1). Assays were
run in triplicate on a Bio-Rad CFX384 Real-Time PCR Detec-
tion System (Bio-Rad) in 5 μl reaction volumes with 3.0 ng of
DNA (functional genes) or 0.3 ng (taxonomic genes) of DNA
and 0.12 μg of UltraPure™ BSA (Life Technologies). Abso-
lute quantification was determined using an appropriate plas-
mid standard with a concentration range of 2–2 × 107 gene
copies μl–1 DNA. Efficiency ranged from 85 to 98%. Full
amplification conditions and standard information are avail-
able in Supplemental Table S2.

2.5 Statistical analysis

Statistical analyses were performed using RStudio (RSTu-
dio Team, 2018). For exploratory data analysis, linear
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model interactions and normality were assessed visually
using ggplot2 (Wickham, 2016) and sjPlot (Lüdecke, 2019).
Exploratory analysis of the response variables showed that the
data were not normally distributed; the relations between soil
physicochemical properties and biological parameters (e.g.,
FAMEs, functional genes, and EAs), as well as among the
biological methods were determined by Spearman’s correla-
tion (ρ). The Kruskal–Wallis test was used to compare the
means of the different biological variables based on site, fol-
lowed by pairwise comparisons with Dunn’s post hoc test
using Benjamini–Hochberg error correction. For each sam-
ple, the geometric mean of the three EAs measured was cal-
culated by multiplying the values of the three EAs, then tak-
ing the third root value as described by García-Ruíz, Ochoa,
Hinojosa, and Carreira (2008).

2.6 Predictive model training and testing

Functional and taxonomic (i.e., bacterial and fungal) genes
were predicted as a function of soil enzymes or FAME mark-
ers, and controlling covariates (e.g., season, soil texture, pH,
irrigation, organic C, and soil moisture via gravimetric water
content [GWC]). Models were trained with data from 2014,
which was an average year in terms of rainfall and tempera-
ture for the region. Subsequently, the model was tested mak-
ing out-of-sample predictions for the years 2015–2018. These
four years were optimal to test the predictive power of the
model because they represented a variety of climatic con-
ditions including record precipitation (2015), extreme high
temperatures (2016), and low rainfall (2018) years; testing
the model against the most challenging predictive conditions
ensured a thorough assessment of its predictive power. Each
biological indicator of soil health was modeled using a gener-
alized linear model with a gamma distributed response vari-
able and a log-link function. This modeling approach was the
most appropriate because the response variables were always
positive, and the log-link function was applied due to the
wide range of values in the response variables. To select the
best combination of covariates for each biological indicator,
models were compared with all potential combinations of
covariates using 10-fold cross-validations for the year 2014.
Cross-validation was preferred to Akaike information crite-
rion model selection because the goal was to increase predic-
tive power, and the maximum number of parameters possible
was eight.

Parameters estimated from the generalized linear model-
fitted data from 2014 were used to make out-of-sample pre-
dictions of functional and taxonomic genes in 2015–2018.
Predictive accuracy was assessed by quantifying percent bias
(PB), relative squared error (RSE) and R2. Percent bias
describes the average tendency of the simulated values to be
greater or smaller than the prediction, as a percentage. There-

F I G U R E 1 Correlation between soil physicochemical properties
(bold) and biological indicators. Enzyme activity calculated as the
geometric mean of β-glucosidase, β-glucosaminidase and alkaline
phosphatase activities, and extracted DNA is given in ng DNA g–1 soil.
All correlations were significant at p < .001. SOC, soil organic C;
FAME, fatty acid methyl ester

fore, a PB of zero means that the predictions and the vali-
dation data are the same. A positive PB means the model
under-predicts the data, while a negative percent bias is the
result of the model over-predicting the data. The RSE com-
pares the predictions of the model to a model that predicts the
mean for every data point. Thus, model accuracy increases as
the PB and RSE are minimized. The R2 from partial correla-
tions (R2

covariates) and the model (R2
model) are given for each

response variable. All analyses were conducted in R v4.0.0
using the packages boot (Canty & Ripley, 2020), rsq, caret,
and metrics.

3 RESULTS

3.1 Soil physicochemical properties

The five sites studied varied greatly in their physicochemi-
cal properties (Table 2). Soil pH ranged from neutral to mod-
erately alkaline with the lowest and highest pH measured in
Sites 2 (pH 7.0) and 4 (pH 8.4), respectively. Soil organic car-
bon (SOC) and total nitrogen (TN) ranged from 3.5 to 19.4 g
kg–1, and 0.4 to 2.2 g kg–1 soil, respectively. Both SOC and
TN were higher in sites with higher clay content and decreased
with increasing sand content (Site 5 > 4 > 3 > 2 > 1). Soil
texture was a strong predictor of and was positively correlated
(p < .001) to physicochemical properties and biological indi-
cators (Figure 1; Supplemental Figures S1 and S2). For exam-
ple, the percentage of silt and clay (SiC) correlated with
pH (r = .65), SOC (r = .93), and microbial abundance via
total FAME (r = .73). Similarly, SOC was highly corre-
lated with total FAME (r = .79) and EA (r = .89). When
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T A B L E 3 Correlations between soil physicochemical properties
and biological indicators

Property Texture SOC TN pH NAG narG nrfA
SOC .93** 1

TN .90** .98** 1

pH .65** .60** .58** 1

NAG .52** .65** .65** .23* 1

narG .64** .73** .73** .41** .63** 1

nrfA .67** .76** .75** .47** .62** .98** 1

nxrA .58** .64** .62** .26* .59** .88** .86**

Note. SOC, soil organic C; NAG, β-glucosaminidase; TN, total soil N.
*Significant at the .05 probability level.
**Significant at the .001 probability level.

analyzing TN, there were positive correlations (r > .58) with
β-glucosaminidase and three genes involved in inorganic N
cycling (Table 3).

3.2 Relationship between microbial
markers quantified by EL-FAME and qPCR

The abundance of all microbial groups evaluated via FAME
markers was significantly (p < .001) higher in sites with high
clay content (Sites 4 and 5) when compared to the three sandy
soils (Sites 1, 2, and 3; Table 2). In the sandy soils, AMF
markers were significantly lower in Sites 1 and 3 when com-
pared to Site 2. The number of copies of laccase-like multi-
copper oxidase (hereafter, laccase) and alkaline metallopro-
tease (apr) genes were higher in Sites 4 and 5 and decreased
with decreasing clay content. The opposite trend was observed
for the neutral metalloprotease gene (npr), for which the num-
ber of copies was significantly higher in the soil with highest
sand content (Site 1), and the lowest at Site 5 (Table 2).

There were strong significant correlations (p < .001)
between FAME markers and corresponding taxonomic gene
copy numbers (Figure 2). The sum of the different mark-
ers for bacteria (Actinobacteria, Gram−, and Gram+) was
strongly correlated with the bacterial 16S rRNA gene (16S; r
= .80). Fungal markers, including both saprophytic and AMF,
showed moderate correlation with the fungal 18S gene (r =
.58). Among the functional genes evaluated, laccase strongly
correlated with fungi and Actinobacteria markers with r = .76
and r = .80, respectively. In contrast, when analyzing Gram+
markers and the npr gene, which is predominantly found in
Gram+ taxa, there was a weak negative (r = -.29) correlation.

3.3 Prediction of genes as a function of
FAME markers and abiotic factors

Models were used to predict genes as function of FAME
markers and other covariates (Figure 3). The best model that

F I G U R E 2 Correlations between quantitative polymerase chain
reaction (qPCR) taxonomical and functional genes and microbial
groups via ester-linked fatty acid methyl ester (EL-FAME). apr,
alkaline metallopeptidases, npr, neutral metallopeptidases. All
correlations were significant at p < .001

predicted the 16S gene as a function of bacterial FAME mark-
ers included SiC, season, and irrigation as additional covari-
ates (Supplemental Figure S1; Table 4). For example, the
model predicted that 16S would increase 1.36 and 1.29 units
per unit increase in bacteria FAME markers and SiC, respec-
tively. Relative to drip irrigation, 16S would be 1.11 times
higher under pivot irrigation and 0.95 times lower in dryland.
The 16S model had moderate predictive accuracy and slightly
over-predicted the average in years 2015–2017
(Figure 3a). For 18S as a function of fungal FAME
markers, the model predicted increases of 1.01, 1.18, and
1.44 times per unit increase in fungal FAME markers, pH,
and SOC, respectively, but decreases of 0.78 units relative to
GWC.

The proteolytic genes apr and npr were predicted as
functions of Gram− and Gram+ markers respectively
(Figure 3c,d). The best model that predicted apr as a function
of Gram− markers, included SiC, SOC, season, and irrigation
as additional covariates. The model predicted that apr would
increase 1.54 and 1.73 times per unit increase in Gram− and
SiC, respectively, but decrease 0.91 times per unit increase in
SOC (Table 4). The apr model had moderate predictive accu-
racy and slightly over-predicted the average in years 2015–
2017 (Figure 3c). For npr gene as a function of Gram+, the
model predicts that npr would increase 1.15 times per unit
increase in Gram+ markers but decrease 0.86 and 0.55 per
unit increase in SiC and GWC, respectively. However, the npr
model had low predictive accuracy and under-predicted the
average in all years (Figure 3d).

The laccase gene is associated with decomposers, and thus
was predicted as a function of Actinobacteria and saprophytic
fungi markers (Figure 3e,f). When predicting laccase as func-
tion of Actinobacteria, the best model included SiC, GWC,
pH, and irrigation as additional covariates (Table 4). The
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F I G U R E 3 Models of predicted genes as a function of fatty acid methyl ester markers. Panels show the distributions of the out-of-sample
predictions of the generalized linear model with gamma distributed dependent variable (orange) with the original data (blue). The triangles and black
lines represent the mean estimate for the year and the standard errors, respectively. The shaded areas represent the distribution, while the jittered
points represent the raw predictions or data. Panels a, b, c, d, e, and f describe the predictions of the best models for 16S using bacterial fatty acid
methyl ester markers markers, 18S as a function of fungi markers, apr as a function of Gram-negative bacteria, npr as a function of Gram-positive
bacteria, and laccase as a function of Actinobacteria and saprophytic fungi, respectively
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F I G U R E 4 Correlations between enzyme activities using the
bench-scale, p-nitrophenol method, and qPCR genes associated to
carbon, phosphorous, and inorganic nitrogen cycling

model had moderate predictive accuracy and slightly over-
predicted the average in years 2015–2017 (Figure 3e). For
laccase as a function of saprophytic fungi, the best model
included SiC, SOC, pH, and irrigation as other covariates, and
predicted increases of 1.06 times per unit increase in sapro-
phytic fungi markers, and 1.38, 1.04, and 1.34 times per unit
increase in SiC, pH, and SOC, respectively. The model had
high predictive accuracy, and slightly over-predicted the aver-
age in years 2015–2017 (Figure 3f).

3.4 Comparisons between enzyme activities
and genes of similar function

The potential EAs of β-glucosidase, β-glucosaminidase, and
alkaline phosphatase were positively correlated with genes
associated with C, N, and P cycling respectively. Of the three
enzymes, β-glucosidase had the strongest correlation (r = .84)
with the gene of similar function (Bglu), followed by alkaline
phosphatase with phoD (r = .74) (Figure 4). Similarly, the
genes narG, nrfA, and nxrA (associated with downstream N
cycling) correlated (r > .59) with β-glucosaminidase. There
were fluctuations associated with soil texture, sampling sea-
son (growing vs. postharvest), and year. Similarly to FAME
data, EAs and the evaluated genes were significantly higher
in the sites with higher clay content. For example, the poten-
tial enzyme activity of β-glucosidase and the number of copies
of the Bglu gene showed similar temporal fluctuations (Sup-
plemental Figure S3). Most sites showed decreases from 2015
(a year of record precipitation) to 2016, followed by increas-
ing trends in 2017. However, at the site with the highest clay
content (Site 5), there were decreases in β-glucosidase and the
gene copies during the growing season of 2017, followed by
increased measurements in 2018.

Although the potential enzyme activity of alkaline phos-
phatase and the phoD gene were positively correlated, there
were contrasting trends based on soil texture (Supplemen-
tal Figure S4). The concentrations of alkaline phosphatase
via EA were similar regardless of sampling season, but gene
copies had lower concentrations during postharvest samplings
(Supplemental Figure S4d). Additionally, there was higher
variability in Site 5 and the trends were not as clear as those
observed in soils with higher sand content. This variabil-
ity was also observed for β-glucosaminidase and three genes
involved in N cycling (Supplemental Figure S5). For exam-
ple, there were fluctuations based on soil texture and year of
sampling, but narG responded similar to β-glucosaminidase.
Although nxrA and nrfA had the lowest and highest concen-
trations of N-related genes respectively, both showed similar
patterns when compared to β-glucosaminidase.

3.5 Prediction of genes as a function of
enzyme activities and abiotic factors

Genes involved in C, N, and P cycling were predicted as a
function of EAs and other covariates (Figure 5). The best
model to predict the Bglu gene as a function of β-glucosidase
included irrigation, season, SOC, and SiC as additional
covariates (Supplemental Figure S2; Table 4). Partial corre-
lations showed that the controlling covariates explained more
of the variance than the enzyme. For example, the model pre-
dicted increases in Bglu of 1.02 times per unit increase in β-
glucosidase, and of 1.47 and 1.31 per unit increase in SiC
and SOC respectively. During postharvest, Bglu would be 0.74
times lower than during the growing season. Relative to drip
irrigation, Bglu would be 1.39 times higher under pivot irriga-
tion and 0.88 times lower in dryland. When predicting the pat-
terns for years 2015–2018, the model slightly over-predicted
the average for years 2015–2017 (Figure 5a). However, the
model had high predictive accuracy and the SE of the predic-
tions overlap those of the data for all time periods.

Three genes involved in N cycling were predicted as func-
tion of β-glucosaminidase and abiotic factors (Figure 5b–e).
For narG as a function of β-glucosaminidase, the model
predicted increases of 1.04 times per unit increase in β-
glucosaminidase. It also predicted increases of 1.39, 1.67, and
0.98 times per unit increase in SiC, SOC, and pH, respectively.
The model slightly over-predicted the average for years 2015–
2017, and slightly under-predicted in 2018 (Figure 5b). Nev-
ertheless, the SE of the predictions overlaps those of the data
for all time periods resulting in moderate predictive accuracy.
For nrfA as a function of β-glucosaminidase the model pre-
dicted increases of 1.13 and 2.42 times per unit increase of
the enzyme and SiC, respectively. During postharvest, nrfA
would be 0.76 times lower than during the growing season.
The model had moderate predictive accuracy and slightly
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F I G U R E 5 Models of predicted genes as a function of enzyme activities. Panels show the distributions of the out-of-sample predictions of the
generalized linear model with gamma distributed dependent variable (orange) with the original data (blue). The triangles and black lines represent the
mean estimate for the year and the SE, respectively. The shaded areas represent the distribution, while the jittered points represent the raw predictions
or data. Panel a describes the predictions of the best model for Bglu gene as a function of β-glucosidase. Panels b, c, d, and e show the best models for
predicting narG, npr, nrfA, and nxrA and respectively, as a function of β-glucosaminidase. Panel e shows phoD as a function of alkaline phosphatase
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over-predicted the average in years 2015–2017 and slightly
under-predicted in 2018 (Figure 5d). For the nxrA gene as a
function of β-glucosaminidase, the best model included SOC
and irrigation as additional covariates. The model predicted
increases of 1.12 times in nxrA with a unit increase in the
enzyme. Relative to drip irrigation, nxrA would be 1.63 times
higher under pivot irrigation and 1.55 times higher in dryland.
However, the model had low predictive accuracy and slightly
over-predicted the average in years 2015–2017 and slightly
under-predicted in 2018 (Figure 5e).

When predicting the phoD gene as a function of alkaline
phosphatase, the best model included pH, GWC, season, and
irrigation as other covariates. phoD was predicted to increase
1.89 times with a unit increase in alkaline phosphatase and
1.12 times with a unit increase in pH. During postharvest,
phoD would be 0.80 times lower than in the growing season.
Relative to drip irrigation, phoD would be 0.74 times lower
under pivot irrigation and 0.84 times lower in dryland. The
model had moderate predictive accuracy and slightly over-
predicted the average in years 2015–2017 and slightly under-
predicted in 2018 (Figure 5f).

4 DISCUSSION

There is a significant gap in knowledge on whether results
from different biological indicator methods provide compa-
rable information on soil health. Different research groups
employ different methods according to equipment availabil-
ity, specific expertise, and budgetary constraints. Conclusions
derived from such methods vary depending on what has been
evaluated (e.g., diversity, abundance, function) and the target
molecule (e.g., lipids, DNA, enzymes) used for quantification.
These varied approaches can make it challenging to compare
results, establish trends and reach consensus on, for example,
how climate and management alter soil health. To address this
knowledge gap, we measured current and emerging biological
indicators of soil biological health in five agricultural semi-
arid soils with different textural classes, which were collected
during years of climatic variability. Our primary goal was to
obtain a better understanding of how different groups of bio-
logical indicators compared, both directly and with respect to
temporal (growing season vs. postharvest) and management
(irrigation vs. dryland) driven trends of soil health.

We developed a model to predict functional and taxonomic
genes as a function of Tier 2 indicators and abiotic factors,
which was tested by making out-of-sample predictions for the
years 2015–2018. These years were ideal to test the model’s
predictive power because they represented extreme drying
and wetting cycles. For example, the year 2015 brought
record precipitation for the region (693 mm vs. 465 mm),
while 2016 was characterized by extreme high temperatures.
A regression model using local soil temperature (ST) data for

these sites showed that ST (0–10 cm) in 2016 was almost 7 ˚C
warmer than in 2015, and over 2 ˚C warmer than the mean ST
from 2005–2018 (Pérez-Guzmán et al., 2020). The year 2017
had average precipitation during the growing season, whereas
2018 had higher temperatures and low precipitation during
the growing season. Since the model was tested against
these challenging predictive conditions ensuring a thorough
assessment of its predictive power, we considered models
with R2

> .40 and R2
> .70 to have moderate and strong

predictive accuracy, respectively. Overall, the five evaluated
sites varied greatly in their soil physicochemical properties,
with major differences in soil texture and SOC which, in
turn, impacted EAs, microbial community structure, and
functional diversity via EL-FAME and qPCR genes. In most
cases, the model identified Tier 2 indicators, soil texture,
and SOC as moderate to strong predictors of the genes of
interest.

4.1 Bacterial and fungal FAME markers
were strongly related to taxonomic and C
cycling genes

An ongoing challenge in soil microbiology is determining
the links between microbial communities and the biogeo-
chemical cycling processes they provide or support. Recent
studies have demonstrated that microbial diversity and
abundance can be used to predict ecosystem functioning and
sustainability (e.g., Salles, Le Roux, & Poly, 2012; Wagg,
Bender, et al., 2014; Wagg, Schlaeppi, et al., 2019). For
example, Delgado-Baquerizo et al. (2016) reported a positive
relationship between microbial diversity and multifunc-
tionality suggesting that loss of diversity would adversely
impact soil fertility and other services. In our study, there
were strong positive correlations between certain FAME
markers and genes of similar functions or taxonomic groups
measured via qPCR. The sum of fungal (saprophytic and
AMF) and the sum of all bacterial markers were linked to
the fungal 18S and bacterial 16S rRNA genes, respectively.
Although no similar research comparing these two methods
has been done, there are studies that have used other fatty
acid profiling assays along with DNA analysis. For example,
the abundance of a plant pathogen (mold) measured via
whole-cell fatty acid analysis was highly correlated with
the amplified DNA from the organism’s spores found in the
plant (Sundelin, Møller, Lübeck, Bødker, & Jensen, 2010).
Similarly, a soil microcosm study on the effect of pesticides
on microbial communities found significant decreases in the
abundance of Gram+ and Gram− groups via PLFA and qPCR
(Karpouzas et al., 2014). In a study by Buckeridge, Banerjee,
Siciliano, and Grogan (2013), seasonal shifts in the microbial
community via PLFA were strongly associated with nutrient
availability; however, qPCR results showed less variations.
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The researchers attributed the discrepancy to the stability of
DNA in soils compared to phospholipids, which are quickly
degraded upon cell death. Our models showed that, in order to
accurately predict 16S and 18S from FAME markers in these
soils, abiotic factors such as soil texture and SOC need to be
included.

Laccases, which are capable of oxidizing diverse aromatic
compounds such as lignin, were strongly correlated with
Actinobacteria and fungal markers. Both fungi and bacteria
(especially Actinobacteria) produce laccases (Baldrian, 2006;
Sinsabaugh, 2010), which enable them to break down ligni-
nolyic compounds in soil. These enzymes play an important
role in C cycling as they are involved in humification, C miner-
alization, and dissolved organic C export (Kellner, Luis, Zim-
dars, Kiesel, & Buscot, 2008; Sinsabaugh, 2010). Recently,
the use of degenerate primers has allowed the identification of
different laccases from fungal groups and from bacterial com-
munities, especially Actinobacteria (Kellner, Luis, & Buscot,
2007; 2008; Sinsabaugh, 2010; Fernandes, da Silveira, Pas-
sos, & Zucchi, 2014). The direct correlative results found
between the different markers in this study, along with the
moderate to strong predictive power of our models, suggests
that the abundance of these decomposer groups may be used
as a proxy for laccase abundance.

4.2 Gram− bacteria via FAME markers
were strongly correlated with proteolytic gene
abundance

Proteases are a large group of hydrolytic enzymes that
catalyze proteins to release peptides and amino acids, thus
playing an important role in N mineralization (Ladd &
Jackson, 1982; Landi, Renella, Giagnoni, & Nannipieri,
2011). Although there are several proteolytic genes identified
in soil, apr and npr metallopeptidase genes are thought to
be the most important in determining overall soil protease
activity (Sakurai, Suzuki, Onodera, Shinano, & Osaki, 2007).
Alkaline proteases are typically found in Gram− bacteria,
while neutral proteases are found in Gram+ bacteria (Bach,
Hartmann, Schloter, & Munch, 2001; Sakurai et al., 2007).
For example, the extracellular peptidases encoded by apr
genes have been identified in members of the Gram− genera
Pseudomonas, Serratia, and Erwinia, while npr genes are
almost exclusively found in Gram+ Bacilli (Bach et al.,
2001; Baraniya et al., 2016). In this study, we found a strong
positive relationship between apr gene abundance and FAME
markers for Gram− bacteria, and the model had moderate
predictive power. However, contrary to expectation, we found
a weakly negative relationship between npr and Gram+
FAME markers, and the model showed small predictive
accuracy. In contrast to all the other biological parameters
measured in this study, there were significantly higher copy

numbers of npr proteolytic genes in sites with higher sand
content.

At least one other study has found that Bacillus-related
npr genes are more abundant in agricultural soils with low
organic matter under desiccation stress (Phillips et al., 2015).
Bacillus spp. are often classified as K-strategists due to their
stability in resource-limited conditions; Firmicutes (a bacilli)
have been shown to be unaffected by C limitation (Fierer,
Bradford, & Jackson, 2007) such as would occur in our sandy
soils. In these nutrient-limited soils, npr-containing Bacilli
may have a competitive advantage over r-strategist type apr-
containing taxa, and be better able to compete for the avail-
able resources and niche space. High numbers of K-strategists
within a microbial community may result in high resistance
to disturbances associated with climate change (de Vries &
Shade, 2013). Recently, our group found significant increases
in Gram+ under natural drought and extreme high tempera-
tures and that microbial communities (via FAME) in the sandy
soils were more resistant and recovered faster than those from
soils with higher clay content (Pérez-Guzmán et al., 2020).
Similarly, under controlled laboratory conditions, Bérard et al.
(2011) found that Gram+ markers increased after prolonged
drought demonstrating the acclimation of these organisms to
cope with stress. The lack of a positive relationship between
npr genes and Gram+ markers in our current study may sim-
ply be due to the fact that while the majority of npr-containing
Bacilli are Gram+, not all Gram+ bacteria are Bacilli. Alter-
nately, we may be detecting npr genes in dormant Bacilli
(e.g., within endospores; Higgins & Dworkin, 2012). These
discrepancies along with the small predicted accuracy of our
model suggest that in our soils one assay cannot replace the
other.

4.3 Enzyme activities and functional genes
involved in C, N, and P cycling were positively
correlated

Enzyme activities play a major role in the capacity of a
soil to degrade SOM. Although no single enzyme is able
to capture the entire metabolic activity of the soil, certain
activities provide important information about degradation
pathways involved in nutrient cycling, and have been pos-
itively correlated with several indicators of soil health and
labile fractions of SOM (Acosta-Martínez, Zobeck, Gill, &
Kennedy, 2002; Stott et al., 2009; Veum et al., 2014). The
activities of β-glucosidase, β-glucosaminidase, and alkaline
phosphatase evaluated in this study provide information on C,
C and N, and P cycling, respectively (Dick 2011; Tabatabai,
1994), and hydrolyze various chemical bonds to release
bioavailable sources of energy to plants and other organisms.
We found comparable relationships between these EAs and
the abundance of related microbial functional genes, with
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strong positive correlations and similar responses to the differ-
ent sampling times. Among the enzymes, β-glucosidase had
the strongest correlation with the gene encoding that enzyme,
and similar trends were observed regardless of sampling time
(growing season vs. postharvest), year or soil textural class.
β-glucosidase’s response to organic C fluctuations associ-
ated with management (e.g., Bandick & Dick, 1999; Cotton
& Acosta-Martínez, 2018; Veum et al., 2015) and climate
variability (Acosta-Martínez et al., 2014; Kardol, Cregger,
Campany, & Classen, 2010) has been demonstrated. More-
over, β-glucosidase activity has been included as an indicator
of C cycling in the Soil Management Assessment Framework
due to its sensitivity to changes in SOC (Stott et al., 2009).
Since both methods provided similar results, at least for these
five sites, the presence of the Bglu gene has the potential to be
used as a proxy of the enzyme activity.

Phosphatases are involved in the cycling of P, which,
after N, is the second most limiting nutrient for plants. Both
alkaline- phosphatase and acid-phosphatase hydrolyze phos-
phomonoesters, which could represent up to one third of the
soil organic P (Acosta-Martínez & Tabatabai, 2011). The
potential activity of alkaline phosphatase and the phoD gene
were positively correlated across all soils; however, temporal
(i.e., season and year) trends from these methods were more
evident in the sites with higher sand content. Additionally, the
model predicted lower abundance of phoD during postharvest
when compared to the growing season. There are numerous
reasons that may explain this finding, including different lev-
els of phosphatase contribution by other organisms in the soils
and relative differences in P pools, organic matter, and clay
content. While alkaline phosphatase may have different ori-
gins (e.g., plant, microbes) and be stabilized in the soil matrix,
the phoD gene measured in this study is primarily found in
bacteria. A global meta-analysis of phosphatase activity found
that alkaline phosphatase activity responds strongly to shifts
in readily bioavailable P (Margalef et al., 2017), which may
be more inconsistent in nutrient-poor sandy soils. Soils with
higher clay content also have a higher potential for stabi-
lizing extracellular enzymes (Ragot, Kertesz, & Bünemann,
2015), leading to a greater possible disparity between poten-
tial enzyme activity and gene abundance than might be found
in sandy soils. It was beyond the scope of this study to eval-
uate the relative contributions of intracellular vs. extracel-
lular enzyme activity and how those relate to phoD gene
abundance, but our results suggest that these two approaches
require further analysis (e.g., analyzing other phosphatase
genes) to determine whether one can be used as a proxy for
the other.

The activity of β-glucosaminidase provides information
about C and N cycling as it hydrolyzes chitin, which is a major
source of mineralized N, and releases amino sugars for plants
and microorganisms to use (Ekenler & Tabatabai, 2004).
Although there are qPCR primers that target soil chitinases
(Williamson, Brian, & Wellington, 2000), we were unsuc-

cessful at implementing these assays and so we instead eval-
uated β-glucosaminidase with respect to three genes involved
in downstream inorganic N cycling. The three N genes fol-
lowed similar trends to those of β-glucosaminidase, with sim-
ilar responses to changes associated with texture and year of
sampling. A recent report on N functional genes showed sim-
ilar changes in abundance for nitrate reducers (e.g., narG) and
chitin degraders (e.g., chiA), especially in the topsoil (Turner,
Mikutta, Guggenberger, & Schaarschmidt, Schippers, 2019).
Their study also found strong correlation between those two
genes and total N. Although our study showed positive corre-
lations between these indicators and TN, abiotic factors such
as soil properties, climate, and management controlled the
presence of the genes, thus evaluation of additional N genes
and β-glucosaminidase is needed.

5 CONCLUSIONS

Our study showed that Tier 2 biological indicators such as
fatty acid profiling and potential enzyme activity, as well as
next generation indicators (i.e., genes) evaluated, provided
comparable results for five agricultural sites that varied in
soil types and sampling times exhibiting climate variability.
Although the trends did not represent a perfect (1:1) relation-
ship, their strong correlations and the moderate to strong pre-
dictive accuracy of Tier 2 indicators resulted in similar trends
and conclusions. However, it is important to note that envi-
ronmental factors and management practices influenced the
biological indicators and, in some cases, explained most of
their variability. Furthermore, the methods were sensitive for
detecting changes in these soils characterized by low SOM
content. Despite this, it is imperative to acknowledge that
the methods we employed measure diverse aspects of the
microbial component (e.g., taxonomy, functional diversity) by
means of different cellular and molecular components, and as
such present tradeoffs in terms of labor, equipment needed,
and costs. However, a major accomplishment of our results is
that it highlighted the benefits of using qPCR as a next genera-
tion of biological indicators for a more comprehensive under-
standing of how the soil microbial community is responding
to changes in management and climate.
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