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Abstract
Aim: Identifying the underlying drivers of species’ distributional dynamics is critical 
for predicting change and managing biological diversity. While anthropogenic factors 
such as climate change can affect species distributions through time, other naturally 
occurring ecological processes can also have an influence. Theory predicts that inter‐
actions between species can influence distributional dynamics, yet empirical evi‐
dence remains sparse. A powerful approach is to monitor and model local colonization 
and extinction—the processes that generate change in distributions over time—and 
to identify their abiotic and biotic associations. Intensive camera‐trap monitoring 
provides an opportunity to assess the role of temperature and species interactions in 
the colonization and extinction dynamics of tropical mammals, many of which are 
species of conservation concern. Using data from a pan‐tropical monitoring network, 
we examined how short‐term local temperature change and ecological similarity be‐
tween species (a proxy for the strength of species interactions) influenced the pro‐
cesses that drive distributional shifts.
Location: Tropical forests worldwide.
Time period: 2007–2016.
Major taxa studied: Terrestrial mammals.
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1  | INTRODUC TION

Across ecosystems and taxa, species distributions shift over time 
in response to natural conditions and anthropogenic threats. 
Identifying the underlying drivers of these shifts is critical for pre‐
dicting the future of biological diversity in a changing world. Because 
abiotic conditions such as ambient temperature determine the geo‐
graphic locations where species can persist (Buckley, Hurlbert, & 
Jetz, 2012), attempts to predict species distributions often focus on 
climate associations alone (Pacifici et al., 2015). Other factors such 
as species interactions and dispersal also influence where species 
occur (Araujo & Peterson, 2012). Species often inhabit a subset 
of the range of abiotic conditions they can tolerate because biotic 
interactions and dispersal limitation can prevent species from “fill‐
ing” their potential distributions. (Araujo & Pearson, 2005; Schloss, 
Nunez, & Lawler, 2012; Urban, Zarnetske, & Skelly, 2013). Moreover, 
theory predicts that biotic processes such as competition can signifi‐
cantly affect distributional shifts (Brooker, Travis, Clark, & Dytham, 
2007; Urban, Tewksbury, & Sheldon, 2012); nonetheless, empirical 
evidence remains sparse (Svenning et al., 2014). In particular, a fun‐
damental premise of biology is that competition between species 
increases with their ecological similarity (Darwin, 1859; Swenson, 
2013). A species may therefore be less likely to colonize areas already 
occupied by ecologically similar species and more likely to experi‐
ence local extinction where ecological similarity is high (Diamond, 
1975; Strauss, Webb, & Salamin, 2006). Here, we incorporate eco‐
logical similarity as a proxy for the strength of species interactions 
in empirical, process‐based models to simultaneously test the role of 
temperature, species interactions and their interdependence in local 
colonization and extinction dynamics.

Identifying the determinants of species distributions involves 
combining process‐based models with high‐resolution data over 
space and time, both of which are often lacking. Instead, most current 

approaches to understand species distributions rely on correlative 
models that infer distribution patterns based on occupancy–en‐
vironment relationships at a single snapshot in time (Pacifici et al., 
2015). Such “snapshot approaches” suffer from multiple shortcom‐
ings (Araujo & Peterson, 2012). One key issue is their assumption 
that observed distributions reflect the entire range of environmental 
conditions a species can tolerate and therefore that species distribu‐
tions are in equilibrium (Araujo & Pearson, 2005). However, this spa‐
tial equilibrium assumption is rarely met, in part because of temporal 
changes in the environment. A more robust alternative approach is to 
monitor and model local colonization and extinction—the processes 
that generate distributional shifts over time (Kery, Guillera‐Arroita, 
& Lahoz‐Monfort, 2013; Yackulic, Nichols, Reid, & Der, 2015). The 
sequential nature of time‐series data enhances inference about cau‐
sality because effects cannot precede causes (Dornelas et al., 2013).

A crucial challenge for understanding how global patterns of di‐
versity may change under future conditions is to identify how the 
environment affects local colonization and extinction dynamics of 
data deficient species. In particular, the extent to which tropical spe‐
cies currently respond to climate remains largely unknown (Lenoir 
& Svenning, 2015) but see (Duque, Stephenson, & Feeley, 2015; 
Freeman & Freeman, 2014), in large part because reliable long‐term 
data are lacking, particularly for some of the most threatened spe‐
cies, which include many mammals (Dornelas et al., 2014; Feeley & 
Silman, 2011; Schipper et al., 2008). Endothermy—the state of being 
warm blooded—buffers mammals from changes in temperature 
(Buckley et al., 2012); most tropical mammals currently experience 
temperatures within their range of thermal tolerance (Khaliq, Hof, 
Prinzinger, Bohning‐Gaese, & Pfenninger, 2014). However, tem‐
perature increases are projected to push many tropical mammal 
species beyond their thermoneutral zones this century (Khaliq et al., 
2014). Moreover, examining the role of biotic interactions, particu‐
larly competitive interactions, in local colonization and extinction, is 

Methods: We used dynamic occupancy models to assess the influence of the abiotic 
and biotic environment on the distributional dynamics of 42 mammal populations 
from 36 species on 7 tropical elevation gradients around the world.
Results: Overall, temperature, ecological similarity, or both, were linked to coloniza‐
tion or extinction dynamics in 29 populations. For six species, the effect of tempera‐
ture depended upon the local mammal community similarity. This result suggests that 
the way in which temperature influences local colonization and extinction dynamics 
depends on local mammal community composition.
Main conclusions: These results indicate that varying temperatures influence tropical 
mammal distributions in surprising ways and suggest that interactions between spe‐
cies mediate distributional dynamics.
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especially important for tropical species because interactions may 
be stronger in the tropics than at higher latitudes (MacArthur, 1972; 
Roslin, 2017; Schemske, Mittelbach, Cornell, Sobel, & Roy, 2009; but 
see Moles & Ollerton, 2016; Moles et al., 2011). Accordingly, trop‐
ical mammals may be less likely to colonize areas where competi‐
tors—larger‐bodied species with similar activity patterns and diets 
(French & Smith, 2005)—occur than where competitors are absent. 
Uncovering if and how temperature and species interactions cur‐
rently influence tropical mammal distributions can provide essential 
information for modelling future shifts. Lastly, rapid human popu‐
lation growth and the natural resource‐based economies of many 
developing countries subject tropical forests to accelerating rates 
of deforestation (Margono, Potapov, Turubanova, Stolle, & Hansen, 
2014). Conversion of forested habitat to other land uses is one of the 
greatest extinction threats for tropical wildlife (Pimm et al., 2014). 
We therefore investigated whether change in forest cover influ‐
enced local colonization–extinction dynamics.

Here, we assess abiotic and biotic drivers of local colonization–
extinction dynamics of mammals along elevational gradients in seven 
tropical forests. We test for occupancy–environment associations 
with temperature and ecological similarity through time. Elevational 
gradients provide a tractable opportunity to study how abiotic and 
biotic factors drive distributional dynamics (HilleRisLambers, Harsch, 
Ettinger, Ford, & Theobald, 2013; Malhi et al., 2010). Background 
climate often varies systematically along elevational gradients, con‐
stituting a natural laboratory to address questions about the role 
of climate in species distributions (Sundqvist, Sanders, & Wardle, 
2013). Species occurrences can be more comprehensively docu‐
mented along elevational than latitudinal gradients because of their 

smaller spatial area. Finally, the shorter distances encompassed by 
elevational gradients relative to latitudinal gradients largely control 
for dispersal limitation (Hargreaves, Samis, & Eckert, 2013).

2  | METHODS

2.1 | Field sites and data collection

We analysed over 400,000 camera‐trap observations sampled along 
seven elevational gradients from three continents by the Tropical 
Ecology Assessment and Monitoring (TEAM) Network (Figure 1). 
TEAM is a global monitoring network comprised of three core part‐
ners (Conservation International, Wildlife Conservation Society, 
Smithsonian Institution) and numerous academic and local part‐
ners. TEAM was established in 2002 to monitor long‐term trends 
in biodiversity, land use and climate in tropical forests throughout 
the world. TEAM surveys terrestrial (i.e., ground‐dwelling) tropical 
mammal populations on an annual basis, using a standardized proto‐
col with large‐scale arrays of permanent camera‐trap points (Jansen, 
Ahumada, Fegraus, & O’Brien, 2014). This provides fine‐grained 
data replicated over a large spatial extent, which are rarely available 
in the tropics (Beck et al., 2012). The camera traps also record the 
temperature each time a photograph is taken, providing local‐scale 
information on temperature in regions of the world for which high‐
resolution climate data are lacking.

We analysed data from seven TEAM study sites that spanned el‐
evation gradients of more than 500 m (Supporting Information Table 
S1). These sites were located in tropical forests on three continents 
(Figure 1). The study sites were: Bwindi Impenetrable Forest (BIF) 

F I G U R E  1  Location of seven Tropical Ecology Assessment and Monitoring (TEAM) study sites with elevation ranges >500 m sampled 
by camera traps. Each study site had 60 camera traps at a density of 1 camera per 1–2 km2. The map includes the elevation range in metres, 
the number of species analysed, the number of years of data and the distribution of camera trap temperature measurements in degrees C 
for each TEAM study site. Vertical lines within temperature distributions depict the minimum, median and maximum temperature for each 
TEAM site. See Supporting Information Table S1 for additional site information
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in Uganda, Nam Kading (NAK) in Lao People‘s Democratic Republic 
(PDR), Pasoh Forest Reserve (PSH) in Malaysia, Ranomafana (RNF) 
in Madagascar, Udzungwa (UDZ) in Tanzania, Volcan Barva (VB) in 
Costa Rica, and Yanachaga‐ Chimillen National Park (YAN) in Peru. 
We use the term “site” throughout the paper to refer to these over‐
all TEAM study sites. Individual camera trap sampling points are re‐
ferred to as sampling points or camera traps. All camera trap data 
were collected between 2007 and 2016.

At each study site, 60 camera traps were deployed at a density 
of 1 camera per 1 or 2 km2 (Supporting Information Table S1). TEAM 
has defined the sampling units as a grid of 2 km2 cells assuming 
that animals within the sampling unit have non‐zero probabilities of 
encountering the camera trap given their movement patterns and 
density (TEAM Network, 2011). Each camera trap was deployed for 
30 consecutive days during the dry season, defined as months with 
<100 mm average rainfall, or the drier part of the year at sites with 
no dry season. Camera trap images were identified by TEAM per‐
sonnel following the standard International Union for Conservation 
of Nature (IUCN) Red List (IUCN, 2014) and managed via custom 
cyberinfrastructure (Baru et al., 2012; Fegraus et al., 2011). TEAM 
monitors all ground‐dwelling and predominately ground‐dwelling 
mammals greater than 100 g in body mass. Of the 163 mammal pop‐
ulations monitored at these sites, the 62 populations with more than 
5 detections annually were examined in this study. For a complete 
list of species monitored, see Beaudrot et al. (2016).

2.2 | Occupancy modelling

We modelled population‐specific local colonization and extinction 
along elevational gradients using dynamic (multi‐season) occupancy 
models (MacKenzie, Nichols, Hines, Knutson, & Franklin, 2003). 
This model is an appropriate and robust tool because it accounts 
for imperfect detection by camera traps (MacKenzie et al., 2006; 
Royle & Dorazio, 2008) and makes few assumptions about equilib‐
rium or pseudo‐equilibrium (Clement, Hines, Nichols, Pardieck, & 
Ziolkowski, 2016). The dynamic occupancy modelling approach has 
a similar sampling scheme as Pollock’s robust design for mark‐recap‐
ture studies (Pollock, 1982). This design is composed of two sam‐
pling periods, primary and secondary, in which a series of detections 
or non‐detections are recorded (Supporting Information Figure S1). 
Among primary periods the population is allowed to be open for col‐
onization or extinction. Our primary periods consisted of years; thus, 
colonization and extinction occurred on an annual basis. Secondary 
periods consisted of 24‐hr intervals within the annual 30‐day cam‐
era‐trap sampling period, which we further combined into 6 days of 
sampling to increase the number of detections per secondary period 
and aid model convergence. This sampling scheme assumes a popu‐
lation was closed to local colonization and extinction during the 30‐
day period each year when the camera traps were deployed.

In a dynamic occupancy modelling framework, collecting data 
during primary and secondary periods allows the ecological pro‐
cess, which is occupancy, to be modelled separately from the ob‐
servation process, which is detection. Indeed, these processes 

must be modelled separately to estimate detection probability. 
The ecological process involves estimating three parameters: ini‐
tial occupancy probability, local colonization probability and local 
extinction probability. The observation process involves estimat‐
ing one parameter: detection probability. Detection probability 
is important because animals may not be detected even though 
they are present. Occupancy estimates that do not account for 
imperfect detection may be biased and underestimate occupancy 
(MacKenzie, 2006).

The occupancy and observation processes can be modelled as 
latent and observed random variables such that:

where zt,i represents occupancy in time t at site i, ht,ij the detection 
history and ptj the probability of detection. These equations de‐
scribe occupancy as a Bernoulli random process. The probability of 
occupancy at season t is given by ψt. If the species was not detected 
in site i in the previous primary period, then the probability of the 
site being colonized at time t is γt. If the species was detected in the 
previous primary period, then the probability of detecting it again is 
given by 1 – εt (i.e., one minus the probability of local extinction). The 
probability that a site is occupied depends upon whether it was oc‐
cupied in the previous time step, thus dynamic changes in occupancy 
are treated as a first‐order Markov process. Initial occupancy, coloni‐
zation and extinction can also be modelled using covariates through 
a logit model of the form logit(πt) = β0 + β1xt, where πt is a Bernoulli 
distributed variable that represents initial occupancy (ψt), coloniza‐
tion (γt) or extinction probabilities (εt), and xt represent covariates.

Covariates were selected to test the effects of abiotic and bi‐
otic factors on local colonization and extinction. Covariate measure‐
ments are described in more detail below. We used two types of 
covariates: sampling point covariates (Elevation, Forest Loss, Forest 
Gain, Biotic) and covariates that were both sampling point and time‐
dependent (Tmin, Tmax, Tvar). Sampling point covariates differed be‐
tween sampling points (i.e., camera traps) but did not change over 
time. Thus, each camera trap had a single (i.e., constant) value of 
elevation, forest loss and forest gain for the study. For each popu‐
lation, each camera trap had a single (i.e., constant) biotic value for 
the study. Sampling point‐ and time‐dependent covariates changed 
annually between sampling points and between years. Thus, each 
camera trap had a different annual value for Tmin, Tmax and Tvar. 
These values were the minimum, maximum and variance of the tem‐
peratures recorded at a camera trap during the 30 days of sampling 
in a year (see details below).

We parameterized the models using maximum likelihood and used 
Akaike information criterion corrected for small sample size (AICc) 

(1)z1,i∼Bern
(
�1

)

(2)(zt,i|zt−1,i=0)∼Bern
(
�t−1

)
for t=2,...,T,

(3)(zt,i|zt−1,i=1)∼Bern
(
1−�t−1

)
for t=2,...,T,

(4)ht,ij|zt,i∼Bern
(
zt,iptj

)
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model selection (Burnham & Anderson, 2002) to test hypothesized 
relationships between local colonization–extinction dynamics based 
on the most parsimonious combination of forest cover change, tem‐
perature and/or biotic interaction covariates. All models included 
in the model set are listed in Supporting Information Table S2. We 
used an intercept‐only model (no covariates) as a null dynamic occu‐
pancy model. For initial occupancy, we conducted model selection 
with and without elevation as a covariate because whether a site 
was occupied at the beginning of the study may vary with elevation 
for some species but not others. That is, some species may be more 
likely to occur at certain elevations whereas other species may be 
equally likely occur at all elevations. For detection, models con‐
tained forest cover change, temperature and/or biotic interaction 
as covariates. We included covariates of colonization and extinc‐
tion as covariates for detection because variation in abundance can 
be a chief determinant of detection probability (Royle & Nichols, 
2003). We modelled both linear and quadratic terms for elevation 
and temperature covariates because a range of ideal conditions for 
a species could result in non‐monotonic relationships (e.g., initial 
occupancy or colonization is highest at intermediate temperatures).

Colonization and extinction were modelled as single parameters 
rather than year‐specific parameters. We explored year effects on 
colonization and extinction in an attempt to explore non‐stationar‐
ity (i.e., that occupancy is not approaching equilibrium). However, 
models with year effects, except for a small number of populations, 
did not converge.

We used condition numbers as a way to ensure adequate model 
fit. Condition numbers provide data on how much information is lost 
when a problem is solved numerically rather than analytically. Models 
with a condition number >104 are indicative of parameters that are un‐
identifiable or models with optimization problems (Cheney & Kincaid, 
2008, p. 640). Therefore, we chose the combination of a condition 
number <5,000 and small standard errors as a conservative way of 
selecting models with which to make inferences in this study. This en‐
sured that the model selected through AICc model selection had an 
appropriate fit to the data. Populations were included in our results if 
the null model and at least one non‐null model had a condition num‐
ber less than 5,000. Odds ratios were used to interpret the strength 
of local colonization and extinction covariates in the best model of  
each population. All modelling was conducted in R using the library 
“unmarked” (Fiske & Chandler, 2011; R Development Core Team, 
2016).

2.2.1 | Forest cover change

Hansen et al. (2013) used Landsat images to produce a global dataset 
characterizing forest extent and change (i.e., loss or gain) at a 30 m 
resolution. We used the Global Forest Change product from Hansen 
et al. (2013) and applied a 75% threshold to the 2000 forest cover 
layer to produce a forest/non‐forest map for the year 2000. We took 
into account the forest loss layers in the product to calculate forest‐
non‐forest maps for each camera‐trap location for the 5 years prior 
to the onset of camera‐trap monitoring. We calculated the percent 

of forest lost in a 30, 60 and 120 m buffer surrounding each camera 
trap location to quantify forest cover change because we were in‐
terested in the role of local change (Supporting Information Figure 
S2). Because camera traps were deployed at a density of 1 camera 
per 1 or 2 km2, buffers of larger sizes that overlapped between cam‐
era traps would not provide meaningful information. To capture the 
greatest variation in forest cover, we used the 120 m buffer for cam‐
era trap specific forest cover loss as a covariate of local colonization, 
extinction and detection in the dynamic occupancy models. We also 
calculated percent forest gain over the 2000–2012 period for the 
buffers around each camera. We used the 120 m buffer of forest 
gain as a covariate of local colonization, extinction and detection 
(Supporting Information Table S2).

2.2.2 | Temperature and elevation

We considered three aspects of temperature on local colonization 
and extinction that have been shown to influence distributions of 
other taxa: temperature minimum (Tmin; Warren & Chick, 2013), tem‐
perature maximum (Tmax; Welbergen, Klose, Markus, & Eby, 2008) 
and temperature variance (Tvar; Thompson, Beardall, Beringer, Grace, 
& Sardina, 2013). Temperature measurements were taken from the 
camera traps during times of active sampling, providing highly local, 
site‐specific temperature data with a precision of 1 C every time a 
camera was triggered. The temperature data measured conditions at 
each camera trap during times of animal activity and are thus biased 
against conditions that animals avoided. Because both the preci‐
sion of the data and potential bias towards animal activity reduce 
the likelihood of detecting responses to temperature, this approach 
produced conservative results.

We inspected the temperature data and removed outliers that 
indicated faulty temperature sensors (i.e., >40°C; n = 3 cameras). 
Faulty temperature sensors within the normal temperature range 
would have been undetected. We then calculated the temperature 
minimum, maximum and variance for each year at each camera trap 
sampling point using camera trap specific temperature records. We 
used these sampling point‐ and time‐dependent measurements as 
covariates of local colonization, local extinction and detection.

We also calculated temperature trends to assess patterns in tem‐
perature change over time at the seven TEAM sites. Specifically, we 
calculated the trend in temperature for each camera trap at each 
TEAM site. We ran a linear regression for the annual temperature 
values at each camera trap as a function of time. We then extracted 
the slope of the linear regression and used this as the temperature 
trend for a camera trap. To examine whether temperature trends 
showed consistent warming at a TEAM site, we plotted the distribu‐
tion of camera trap specific trends per TEAM site (Figure 2).

Elevation data were extracted from the void filled Shuttle Radar 
Topography Mission (SRTM) digital elevation model [90 m resolu‐
tion with vertical accuracy of 4–7 m (Gorokhovich & Voustianiouk, 
2006)] from the Consortium for Spatial Information (CGIAR‐CSI; 
Jarvis, Guevara, Reuter, & Nelson, 2008) for the geographic coordi‐
nates of each camera trap.
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F I G U R E  2  Distribution of temperature trends at individual camera traps. Each camera trap recorded the temperature when it took a 
photograph, providing highly local, camera trap‐specific temperature data. We show the distribution of slopes of temperature trends over 
time for each of the 60 camera traps at each of the seven Tropical Ecology Assessment and Monitoring (TEAM) sites for temperature (a) 
maximum, (b) minimum and (c) variance. Temperature did not change during the study period at TEAM sites overall. However, temperature 
changed over time at many individual camera traps. Darker shading depicts higher densities of camera traps with a given temperature trend. 
Black tick lines indicate the minimum, median and maximum trend for each variable and site. Median values at zero indicate the lack of an 
overall temperature trend at the TEAM site level. The extent of variation in positive and negative trends, shown by the variances in the 
distributions, denotes temperature increases and decreases during the study period at the local camera trap scale. An individual temperature 
trend was calculated as the slope of a linear regression of temperature values over time at a camera trap. Standardized beta coefficients 
from the linear regressions are shown. Three‐letter TEAM site codes correspond to Figure 1
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2.2.3 | Ecological similarity of local mammal 
community composition

We tested for potential species interactions by including an index of 
ecological similarity as a predictor of local colonization and extinc‐
tion dynamics. In the absence of direct information on competitive 
interactions, measures of ecological similarity—namely, ecological 
traits such as diet, body size and activity pattern, and the degree 
of evolutionary relatedness in local communities (Cadotte, Albert, & 
Walker, 2013; Cavender‐Bares, Kozak, Fine, & Kembel, 2009; Uriarte 
et al., 2010)—can serve as a proxy of the amount of biotic resistance 
encountered as distributional dynamics occur.

For each camera‐trap point at each TEAM site and for each 
species, we computed an ecological similarity index between the 
focal species being modelled and all other mammal species ob‐
served at the camera‐trap point. This index combined phyloge‐
netic and functional trait distances in a single, continuous index 
(Cadotte et al., 2013). We chose to combine phylogenetic and 
functional trait information because phylogenies and traits can 
provide different and sometimes complementary information. By 
combining the two sources of information together, we sought to 
overcome the weaknesses of each individual approach (Cadotte 
et al., 2013).

We used a phylogenetic tree of mammals (Fritz, Bininda‐Emonds, 
& Purvis, 2009) to estimate phylogenetic distances between all pairs 
of species observed at each TEAM site. Because this phylogenetic 
tree was not fully resolved, we used a set of 100 trees wherein poly‐
tomies were randomly resolved (Kuhn, Mooers, & Thomas, 2011). 
Then branch lengths were averaged over these 100 trees to create a 
pairwise matrix of phylogenetic distances.

To estimate functional‐trait distances, we used trait data on body 
size and dietary guild from Beaudrot et al. (2016), data on activity 
pattern from PanTHERIA (Jones et al., 2009) and the R package 
“FD” (Laliberté, Legendre, & Shipley, 2014). Body‐mass data were 
continuous (in grams) whereas dietary‐guild data (herbivore, omni‐
vore, insectivore or carnivore) and activity pattern data (diurnal only, 
nocturnal only, other) were categorical. We calculated a Gower‐dis‐
tance matrix because the Gower‐distance can integrate continuous 
and categorical data into a single‐distance metric (Gower, 1971). The 
body mass, dietary‐guild and activity pattern data were weighted 
equally in the Gower‐distance matrix.

We combined the phylogenetic (PDist) and functional‐trait‐dis‐
tance (FDist) matrices into a single‐distance matrix (FPDist) weigh‐
ing the two input matrices equally (Cadotte et al., 2013) such that:

where a and p are weighting factors (Cadotte et al., 2013). We used 
a = 0.5 to weight the phylogenetic and functional trait distances evenly 
in the FPDist calculation. We used p = 2 to calculate a Euclidean dis‐
tance from the combined functional and phylogenetic distances.

One shortcoming of functional and phylogenetic distances is 
that they are sensitive to variation in species richness (i.e., in the 

local community size). We therefore standardized FPDist for our 
ecological dissimilarity index (EDI) to eliminate the sensitivity to 
variation in species richness [see Uriarte et al. (2010) for a similar 
approach]. To standardize the EDI, we created null models wherein 
artificial communities were simulated and their EDI recalculated 
each time. For each species and community combination, we gen‐
erated 1,000 simulated EDI values. The standardized EDI was cal‐
culated using the following formula:

We used the mean distance between the focal species and the 
other species observed at a camera trap as a covariate of local colo‐
nization, local extinction and detection. Positive values for the stan‐
dardized index indicate ecological dissimilarity, whereas negative 
values indicate ecological similarity.

Dendrograms illustrate the ecological similarity measured within 
mammal communities at each TEAM site (Supporting Information 
Figure S2). We used the unweighted pair group method with arith‐
metic mean (UPGMA) clustering method, which calculates the mean 
distance between clusters as the distance between each cluster 
point and all other points in a different cluster. A new cluster forms 
from the two clusters with the lowest mean distance (Fielding, 
2007). Species that are more ecologically similar at a TEAM site are 
closer together in the site‐level dendrograms.

3  | RESULTS

Forty‐two populations representing 36 species had sufficient data 
for successful model convergence (Supporting Information Table 
S3). Of these 42 populations, the null model (without covariates) was 
the best model for 13 populations. Twenty‐nine populations had 
best models with biotic and/or temperature covariates for local col‐
onization and/or extinction (Table 1). All seven tropical forest study 
sites had mammal populations with best models containing biotic 
and temperature covariates for local colonization and/or extinction 
(Supporting Information Table S1).

(5)FPDist= (aPDistp+
(
1−a

)
FDistp)1∕p,

(6)−
(
EDIobs−mean EDInull∕SDEDInull.

)

TA B L E  1  Summary of best models

Best model
Number of 
populations

Null 13

Covariate 29

Biotic 2

Temperature 13

Temperature and biotic 14

Forest cover change 0

Note. The number of populations with best‐fit models with and without 
covariates are shown. Supporting Information Table S2 contains the 
model set and Supporting Information Table S3 contains the best‐fit 
models for each population.
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3.1 | Forest cover change

There was little change in forest cover during the period exam‐
ined, presumably because the camera traps were located within 
protected areas. Only three of the seven study sites (i.e., BIF, PSH, 
UDZ) had measurable change in forest loss or gain within a 30 m 
buffer of the camera traps (Supporting Information Figure S1). 
None of the best models for any population contained forest cover 
change (Table 1).

3.2 | Temperature

Temperature trends at individual camera trap locations varied sub‐
stantially despite a lack of overall study site‐level warming during the 
study period (Figure 2). Local colonization and extinction dynamics 
of the majority of populations in this study responded to changes 
in local (i.e., camera trap specific) temperature (Table 1), but the 
direction and magnitude of this change varied among populations 
(Figures 3 and 4).

In many instances, odds ratios of local colonization and ex‐
tinction estimates (±SE) indicated that animals were less likely 
to occupy areas as they warmed. For example, the colonization 
probability of the black agouti (Dasyprocta fuliginosa, Yanachaga, 
Peru) decreased on average 3.41 ± 0.30 times for a unit increase 
in scaled minimum temperature. (All interpretations correspond 
to scaled covariates because covariates were scaled and centred 
to aide in model convergence.) We found similar patterns in the 
Central American agouti (Dasyprocta punctata, Volcan Barva, 
Costa Rica) and Svynnerton’s bush squirrel (Paraxerus vexillarius, 
Udzungwa, Tanzania), which decreased 3.51 ± 0.31 and 9.62 ± 0.12 
times, respectively, for a unit increase in scaled minimum tempera‐
ture (Figure 3).

Other species were more likely to go locally extinct with in‐
creasing temperatures. For example, the Malagasy civet (Fossa fos‐
sana, Ranamofana, Madagascar) and ring‐tailed coati (Nasua nasua, 
Yanachaga, Peru) were 1.8 ± 1.88 times and 3.72 ± 3.46 times, 
respectively, more likely to go locally extinct with a unit increase 
in scaled minimum temperature. Furthermore, the African giant 
pouched rat (Cricetomys gambianus, Udzungwa, Tanzania) was 2.32 
± 0.97 times more likely to go locally extinct with a unit increase in 
scaled maximum temperature. These results suggest that a number 
of tropical mammal populations moved away from warmer micro‐
habitat conditions.

In other cases, areas that got hotter were more likely to be 
occupied. For instance, the colonization probability of the lesser 
mouse‐deer (Tragulus kanchil, Nam Kading, Lao PDR) increased 1.32 
± 1.23 times with a unit increase in scaled maximum temperature. 
We found a similar pattern for the red brocket (Mazama americana, 
Yanachaga, Peru), bushpig (Potamochoerus larvatus, Udzungwa, 
Tanzania), chimpanzee (Pan troglodytes, Bwindi, Uganda) and 
L’hoesti’s monkey (Cercopithecus lhoesti, Bwindi, Uganda), which 
were 2.38 ± 1.26, 2.21 ± 1.31, 1.43 ± 0.49 and 1.30 ± 0.61 times, 
respectively, more likely to colonize a site with a unit increase in 

scaled maximum temperature. Local extinction decreased 1.59 ± 
0.42 times for the Asiatic brush‐tailed porcupine (Atherurus mac‐
rourus, Nam Kading, Lao PDR), 1.65 ± 0.52 times for the lowland 
paca (Cuniculus paca, Volcan Barva, Costa Rica) and 3.70 ± 0.22 
times for the black‐fronted duiker (Cephalophus nigrifrons, Bwindi, 
Uganda) with a unit increase in scaled minimum temperature. The 
probability of extinction also decreased 2.11 ± 0.45 times for the 
bushy‐tailed mongoose (Bdeogale crassicauda, Udzungwa, Tanzania) 
and 29.10 ± 0.08 times for the chimpanzee (Pan troglodytes, Bwindi, 
Uganda) with a unit increase in scaled maximum temperature 
(Figure 4).

As scaled local temperature variance increased by one unit, local 
colonization increased 16.67 ± 26.45 times for the African golden 
cat (Caracal aurata, Bwindi, Uganda) and 2.80 ± 4.25 times for the 
common treeshrew (Tupaia glis, Pasoh, Malaysia). In contrast, local 
colonization declined 2.66 ± 0.40 times for the tayra (Eira barbara, 
Yanachaga, Peru) and 210.66 ± 0.017 times for the collared peccary 
(Pecari tajacu, Volcan Barva, Costa Rica) (Figure 3). For lesser mouse 
deer (Tragulus kanchil, Pasoh, Malaysia), local extinction decreased 
8.40 ± 0.20 times as scaled temperature variance increased one unit 
(Figure 4). These findings reinforce the importance of accounting 
for temperature variability when modelling species distributions 
(Vasseur et al., 2014).

3.3 | Ecological similarity

Competition with ecologically similar species influenced local extinc‐
tion dynamics for some species. Black‐fronted duiker (Cephalophus 
nigrifrons, Bwindi, Uganda) and Malagasy civet (Fossa fossana, 
Ranamofana, Madagascar) were 3.49 ± 0.22 and 4.57 ± 0.22 times, 
respectively, more likely to experience local extinction in areas oc‐
cupied by ecologically similar species‐their potential competitors 
(Figure 4).

Other species were more likely to colonize areas already occupied 
by ecologically similar species. For instance, lowland paca (Cuniculus 
paca, Yanachaga, Peru), chimpanzees (Pan troglodytes, Bwindi, 
Uganda), Asiatic brush‐tailed porcupine (Atherurus macrourus, Pasoh, 
Malaysia), L’Hoesti’s monkey (Cercopithecus lhoesti, Bwindi, Uganda) 
and lesser mouse‐deer (Tragulus kanchil, Nam Kading, Lao PDR) were 
1.77 ± 0.61, 3.06 ± 0.38, 5.61 ± 0.25, 6.85 ± 0.15 and 4.36 ± 0.20 
times, respectively, more likely to colonize areas with ecologically 
similar species (Figure 3). Furthermore, chimpanzee (Pan troglodytes, 
Bwindi, Uganda), bushpig (Potamochoerus larvatus, Bwindi, Uganda) 
and lowland paca (Cuniculus paca, Volcan Barva, Costa Rica) were 
550.54 ± 3127, 16.62 ± 17.34 and 2.06 ± 1.20 times, respectively, 
less likely to go locally extinct in areas occupied by ecologically sim‐
ilar species (Figure 4).

3.4 | Synergistic effects of temperature and 
ecological similarity

For six species, local colonization–extinction dynamics were con‐
tingent on both temperature and ecological similarity (i.e., the best 
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F I G U R E  3   Influence of temperature and ecological similarity on local colonization probabilities. Predicted values (black line) and 95% 
confidence intervals for temperature minimum (Tmin, light orange shading), temperature variance (Tvar, yellow shading), temperature 
maximum (Tmax, red shading) and ecological similarity (Biotic, blue shading) for species with top models containing covariates as predictors 
of local colonization and Δ Akaike information criterion corrected for small sample size (AICc) > 2 from the null model. Variables have been 
scaled and centred, thus positive and negative values represent increases and decreases from the mean. Positive values for the biotic index 
indicate ecological dissimilarity of the local mammal community to the focal species, whereas negative values indicate ecological similarity. 
Three‐letter site codes correspond to Figure 1
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F I G U R E  4   Influence of temperature and ecological similarity on local extinction probabilities. Predicted values (black line) and 95% 
confidence intervals for temperature minimum (Tmin, light orange shading), temperature variance (Tvar, yellow shading), temperature 
maximum (Tmax, red shading) and ecological similarity (Biotic, blue shading) for species with top models containing covariates as predictors 
of local extinction and Δ Akaike information criterion corrected for small sample size (AICc) > 2 from the null model. Variables have been 
scaled and centred, thus positive and negative values represent increases and decreases from the mean. Positive values for the biotic index 
indicate ecological dissimilarity of the local mammal community to the focal species, whereas negative values indicate ecological similarity. 
Three‐letter site codes correspond to Figure 1
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model contained an interaction term, see Supporting Information 
Table S3). For these species, the way in which temperature influ‐
enced local colonization and extinction dynamics depended on how 
ecologically similar the local mammal community was to the focal 
species. Specifically, Sanje mangabey (Cercocebus sanjei, Udzungwa, 
Tanzania) was less likely to colonize areas with ecologically similar 
species and more likely to colonize areas with ecologically dissimi‐
lar species as temperature variance increased. Red brocket (Mazama 
temama, Volcan Barva, Costa Rica) and servaline genet (Genetta 
servalina, Udzungwa, Tanzania) moved into areas with ecologically 
similar species as maximum temperatures got hotter but colonized 

areas with ecologically dissimilar species where maximum tempera‐
tures cooled over time. As minimum temperatures warmed, Abbott’s 
duiker (Cephalophus spadix, Udzungwa, Tanzania) and yellow‐backed 
duiker (Cephalophus silvicultor, Bwindi, Uganda) were more likely to 
go locally extinct in areas with ecologically similar species. Lastly, 
as temperature variance increased, nine‐banded armadillo (Dasypus 
novemcinctus, Volcan Barva, Costa Rica) were more likely to go ex‐
tinct in areas with ecologically similar species. Nine‐banded armadil‐
los were more likely to go extinct in areas with ecologically dissimilar 
species when local temperatures were more stable (i.e., when tem‐
perature variance decreased) (Figure 5).

F I G U R E  5  Synergistic influences of 
temperature and ecological similarity 
on local colonization and extinction 
dynamics. Local colonization–extinction 
dynamics were contingent on both 
temperature and ecological similarity for 
several species. This figure depicts the 
interaction terms by showing the effect 
of ecological similarity on colonization 
and extinction as temperature changed. 
For example, Mazama temama was more 
likely to colonize areas with ecologically 
similar species as maximum temperature 
increased, but more likely to colonize 
areas with ecologically dissimilar species 
as maximum temperatures decreased. 
Temperature maximum (Tmax), minimum 
(Tmin) and variance (Tvar) have been 
scaled and centred, thus positive and 
negative values represent increases 
and decreases from the mean. The 
green and purple shading show 95% 
confidence intervals for the estimates of 
local colonization in ecologically similar 
and dissimilar mammal communities, 
respectively, for two standardized values 
(−1, 1) of the continuous ecological 
similarity index
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4  | DISCUSSION

We tested for the influence of local temperature, ecological similar‐
ity and forest cover change as drivers of local colonization and ex‐
tinction dynamics—the processes underlying distributional shifts—in 
tropical mammals. We found that local temperature change was as‐
sociated with important effects on these dynamics for many, but not 
all, species, and responses to local temperature were highly variable. 
Moreover, ecological similarity also affected local colonization and 
extinction dynamics, suggesting that interspecific biotic interac‐
tions can act as a barrier (sensu “biotic resistance” (Levine, Adler, 
& Yelenik, 2004)) for some tropical mammal species. Nevertheless, 
we did not find consistent support for the prediction that species 
would have lower colonization and higher extinction in areas with 
ecologically similar mammals. Instead, a number of populations had 
the opposite response: higher colonization and lower extinction 
probabilities in areas with ecologically similar species. None of the 
populations responded to change in forest cover, likely because of 
the small amount of change observed.

Positive species interactions can facilitate colonization and re‐
duce local extinction (Bruno, Stachowicz, & Bertness, 2003), yet have 
rarely been considered when examining the drivers of distributional 
change (Crotty & Bertness, 2015). In particular, species interactions 
that improve habitat conditions (i.e., habitat amelioration) or reduce 
predation (i.e., associational defences) can promote persistence and 
expand the area where a species occurs (Bertness & Callaway, 1994). 
Contrary to our expectation for competition between ecologically 
similar species, positive interactions with ecologically similar species 
could have affected distributional dynamics for some species in this 
study. For example, local extinction probability was lower for both 
chimpanzees and bushpigs at camera traps with ecologically similar 
species. Chimpanzees are dominant to other primate species due 
to their large body size, and have access to the highest nutritional 
quality fruit when feeding in proximity (Houle, Chapman, & Vickery, 
2010). Chimpanzees may cue in on other primate species feeding as 
a signal of food availability thereby benefiting from ecologically sim‐
ilar species. As another example, bushpigs are ecologically similar to 
several primate species at Bwindi in Uganda (Supporting Information 
Figure S3). They have been observed to forage for fallen fruits under 
fruiting trees as primates feed and drop fruits to the ground (Ghiglieri 
et al., 1982). Bushpigs can therefore benefit from some frugivorous 
primates via increased access to food.

Importantly, the influence of temperature on local colonization 
and extinction depended on mammal community similarity for several 
species, demonstrating that these factors can have synergistic effects. 
The relative influence of these factors can therefore change depend‐
ing on the environmental and community context (Lessard, Belmaker, 
Myers, Chase, & Rahbek, 2012; Lessard et al., 2016). Furthermore, of 
the six species for which we modelled populations at multiple TEAM 
study sites, none exhibited consistent relationships with temperature 
across study sites (Supporting Information Table S3). Similar inconsis‐
tencies in species responses to temperature have also been found for 
temperate mammals (Rowe et al., 2015). This highlights the context 

dependency of species responses to changing temperature, poten‐
tially due to differences in local community composition. Local mam‐
mal communities differed not only between camera traps but also 
between TEAM study sites. We suggest that differences in local com‐
munity composition may play an important and often unaccounted for 
role in influencing distributional dynamics.

That changing temperature and ecological similarity simultane‐
ously and synergistically affected local colonization and extinction 
dynamics has fundamental implications for climate‐change research. 
Most models still rely on the environmental affinities of species alone 
to forecast species distributions while ignoring the potential role of 
biotic interactions (Urban et al., 2016), despite considerable implica‐
tions (Araujo & Luoto, 2007; Blois, Zarnetske, Fitzpatrick, & Finnegan, 
2013; Pacifici et al., 2015; Wisz et al., 2013). Very few studies show 
a direct link between climate change and site‐level extinctions, yet 
changes in species interactions have been a commonly identified 
proximate driver of site‐level extinctions (Cahill et al., 2013). Novel 
competitors can reduce fitness (Alexander, Diez, & Levine, 2015) and 
variation in competitive ability has been shown through simulations 
to drive site‐level extinctions (Urban et al., 2012). While an increasing 
number of studies incorporate biotic interactions into species dis‐
tributions models (Record et al., 2018), few studies have provided 
empirical support for the role of species interactions affecting shifts. 
The fact that the ecological similarity of the local mammal commu‐
nity influenced the local colonization and extinction dynamics of nu‐
merous populations in this study suggests that species interactions 
likely influence tropical mammal distributions. Our empirical results 
are consistent with theoretical predictions and simulation studies 
indicating that interactions between species can affect the coloni‐
zation of new areas (Brooker et al., 2007; Urban et al., 2012) and 
therefore indicate that the inclusion of species interactions in species 
distribution modelling is vital, yet the context dependency of our re‐
sults highlights the complexities of such requirements.

We documented the drivers of local colonization and extinction 
dynamics in species of conservation concern, but multiple factors 
limited our assessment. First, even with intensive sampling most 
species were rare and insufficient detection of rare species inhib‐
its estimation of occupancy dynamics for many of the species mon‐
itored by TEAM (Beaudrot et al., 2016). Second, the time span of 
this study (5–9 years) is short in comparison with some mammalian 
life spans. Furthermore, the distributions of some tropical mammals 
may shift in response to fluctuations in food availability (Marshall, 
Beaudrot, & Wittmer, 2014). Changes in temperature and precipi‐
tation may trigger phenological changes (Wright, 1996) that modify 
resource availability and habitat quality, which may ultimately drive 
local colonization–extinction dynamics. Other unmeasured fac‐
tors, such as natural disturbance (Sheil, 2016), rainfall, humidity and 
cloud cover could have also affected local colonization–extinction 
dynamics. In addition, shared habitat preferences between ecolog‐
ically similar species may have driven local colonization–extinction 
dynamics rather than species interactions. Lastly, we did not find 
an effect of forest cover change, likely because camera traps were 
located within protected areas, but other forms of anthropogenic 
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disturbance at TEAM sites, such as edge effects and hunting, may 
have affected mammal populations (Hegerl et al., 2017; Mugerwa, 
Sheil, Ssekiranda, Heist, & Ezuma, 2013).

We found that the local colonization and extinction dynamics of 
tropical forest mammals are strongly associated with changes in local 
temperature and our results further suggest that local mammal‐com‐
munity composition can affect these dynamics. This paper highlights 
the importance of long‐term, standardized studies of mammal com‐
munities for understanding the role of species interactions and the 
environment in distributional dynamics. We conclude that consider‐
ing the influence of species interactions is essential in climate change 
projections as they are increasingly incorporated into tropical land 
management, vulnerability assessments and conservation planning.
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