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Network analysis is on the rise across scientific disciplines because
of its ability to reveal complex, and often emergent, patterns and
dynamics. Nonetheless, a growing concern in network analysis is
the use of limited data for constructing networks. This concern is
strikingly relevant to ecology and conservation biology, where
network analysis is used to infer connectivity across landscapes. In
this context, movement among patches is the crucial parameter
for interpreting connectivity but because of the difficulty of
collecting reliable movement data, most network analysis pro-
ceeds with only indirect information on movement across land-
scapes rather than using observed movement to construct
networks. Statistical models developed for social networks pro-
vide promising alternatives for landscape network construction
because they can leverage limited movement information to
predict linkages. Using two mark-recapture datasets on individual
movement and connectivity across landscapes, we test whether
commonly used network constructions for interpreting connectiv-
ity can predict actual linkages and network structure, and we
contrast these approaches to social network models. We find that
currently applied network constructions for assessing connectivity
consistently, and substantially, overpredict actual connectivity,
resulting in considerable overestimation of metapopulation life-
time. Furthermore, social network models provide accurate pre-
dictions of network structure, and can do so with remarkably
limited data on movement. Social network models offer a flexible
and powerful way for not only understanding the factors influ-
encing connectivity but also for providing more reliable estimates
of connectivity and metapopulation persistence in the face of
limited data.
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Network analysis has recently exploded across scientific dis-
ciplines, including the social sciences, physics, cellular bi-

ology, and ecology (1–4). Topics as divergent as the stability of
the Internet and the structure of metabolic reactions can be
depicted through network analysis (1, 3). Such analysis is bene-
ficial because it can facilitate the identification of complex, and
often emergent, patterns, and can provide hypotheses for rela-
tionships between structure and function in many systems (2, 3).
Nonetheless, a growing, widespread concern in the topic of
network analysis is the reliability of data used in constructing
networks (4–8).
In ecology and conservation, network analysis is increasingly

being used to assess population connectivity across landscapes
(9–13). Because of the importance of connectivity in conser-
vation and its relevance to population and community ecology
(14–16), network analysis and the accompanying use of graph
theory are often emphasized as powerful approaches that have
modest data requirements for assessing connectivity (10, 11,
13). In this spatial context, resource patches are considered
nodes (or vertices) and movements and/or flows between
patches are described as links (or edges/arcs), such that the
network is a landscape representation of patches that poten-
tially interact (17).

Although movement is a critical component of the dynamics of
populations and communities across landscapes (15, 16), move-
ment is a notoriously difficult parameter to estimate at a land-
scape scale (13, 18). As a consequence, spatial network analysis
is predominantly applied based on assumptions or indirect in-
formation regarding movement rather than on estimates of
movements among resource patches. Links are typically assumed
to occur if individuals can potentially move between patches
based on maximum known dispersal distances of species or, less
commonly, through assumptions regarding dispersal kernels (11,
13, 19). Given the difficulty to empirically quantify connectivity
via experiments or observed movements, network constructions
that use limited information on movement could provide valu-
able, cost-effective approaches for assessing connectivity (13).
Despite this potential, direct tests of whether network analysis
can provide meaningful estimates of actual connectivity have yet
to emerge (17).
Statistical models developed for social networks (20, 21)

provide a promising alternative approach for predicting links and
assessing connectivity, although such models have not been ap-
plied in a landscape or conservation setting. These models were
originally developed to test for factors influencing social rela-
tionships among individuals, but their generality offers applica-
bility beyond the social sciences. Not only can these models
predict different types of linkages, they can address formal hy-
potheses regarding network structure (20, 21). Social network
models may be particularly relevant to connectivity assessments
because they can be applied in situations where only limited data
are collected on a network (20), which could be useful given the
difficulties of measuring movements at landscape scales.
We consider two types of social network models, a sender–

receiver model and a latent space model, to predict landscape
connectivity (Materials and Methods) (20, 21). Both models come
from stochastic social network models termed “latent position,
random graphs,” which allow for different types of link responses
(e.g., binary, Poisson) and can account for spatial dependencies
in connections across networks (20–22). For connectivity assess-
ments, a sender–receiver model allows for unobserved move-
ment heterogeneity and directional movement among patches
(i.e., movement from patch i to j is not equal to movement from
patch j to i). In contrast, a latent space model estimates an un-
known or “latent connectivity space” by leveraging the observed
similarities in movement across patches within networks (20).
Given the potential for highly directional movement across
landscapes in many circumstances (23, 24) and the difficulty to
estimate the complex nature of factors influencing connectivity
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(18, 25), these models may prove highly useful for connectivity
assessments.
We test whether network constructions derived from social

network models and recent approaches in spatial ecology can
quantify observed connectivity and predict actual linkages in
real-world, landscape networks. We contrast these network
constructions using two empirical, mark-recapture datasets that
span several orders of spatial magnitude: within-field movements
of a cactus-feeding insect (Chelinidea vittiger) on patchy Opuntia
cactus and breeding-season movements of the endangered
Everglades snail kite (Rostrhamus sociabilis plumbeus) across
wetlands in peninsular Florida, USA. These examples provide
a rare opportunity to quantify the extent to which network
constructions can predict linkages and whether constructions can
recover observed landscape connectivity. We further contrast
the ability of these approaches to predict linkages and recover
landscape structure based on limited data by randomly removing
an increasing proportion of the observed movement data and
requantifying network metrics and link prediction accuracy
(Materials and Methods) (cf. 6, 8).

Results
Both of these empirical examples are notable for assessing the
utility of network analysis for ecological landscapes because in
both situations, all patches (or nodes) were sampled in each time
step, the networks captured spatial scales relevant to movements
of each species (26, 27), and movement data were collected at
fine temporal resolutions within each network (Materials and
Methods). Based on these mark-recapture data, we observed 70
movements of C. vittiger and 108 movements of R. sociabilis
plumbeus. The frequency of movements declined exponentially
with distance for both species (Fig. S1). C. vittiger moved locally
across cactus patches (median distance moved = 4.5 m) (cf. 26),
whereas R. sociabilis plumbeus moved widely across its geo-
graphic range within breeding seasons (median distance moved =
43 km) (cf. 27). The resulting portrayal of these observed
landscape networks showed that observed movements tended to
be geographically localized (Fig. 1A). Movements were also
highly directional: The fraction of links between patches that
were reciprocal (i.e., movement in both directions) was ex-
tremely low (0.09 for C. vittiger and 0.07 for R. sociabilis plum-
beus). These observed networks provided a powerful means to
assess the ability of different network constructions to predict
observed linkages.
We first constructed networks based on the maximum distance

of movements observed in the literature (26, 28), which is the
most common approach for constructing landscape networks
when movement data are not available (9, 10, 19). This approach
consistently had the lowest accuracy in predicting linkages
compared with other methods, and predicted no better than
chance for C. vittiger (Fig. 2 and Fig. S2). This low predictive
accuracy arose because it consistently had high false-positive
error rates, where it overpredicted linkages (Fig. 1B and Fig. S2).
An alternative to a maximum distance construction is to take

information on a dispersal kernel (i.e., a movement probability
density function based on geographic distance) to construct
a landscape network (11, 12). We contrasted two kernel-based
constructions for spatial networks (Materials and Methods). First,
we constructed networks assuming a negative exponential kernel,
which is frequently used in metapopulation ecology (16) and has
been suggested as a useful model for spatial networks in other
disciplines (29, 30). We contrasted this theoretical kernel con-
struction (Fig. 1C) that does not require movement data to using
the empirical movement kernel (Fig. 1D) that we estimated with
mark-recapture data to construct landscape networks (Fig. S1).
Both of these constructions were moderate in predictive accu-
racy, with each kernel-based method performing similarly (Fig. 2
and Fig. S2). This comparison suggests that, in the absence of

movement data, using a theoretical kernel based on a negative
exponential distribution can capture empirical kernel con-
structions and improve inference on connectivity over using the
maximum known movement distance.
We then applied social network models to construct networks,

which were generally best at predicting linkages (Fig. 1 E and F),
with the sender–receiver model providing the highest predictive
accuracy in both networks (Fig. 2 and Fig. S2). Interestingly, the
sender–receiver models were generally more accurate at pre-
dicting linkages than other constructions, even when up to 50–
80% of the data were missing when constructing the network
(Fig. 2 and Fig. S2). The sender–receiver model was the only
construction considered that could account for the observed di-
rectionality in movement, although it still predicted more reci-
procity in movement than what was observed (the predicted
fraction of reciprocal links between patches when no data were
removed was 0.32 for C. vittiger and 0.18 for R. sociabilis plum-
beus). In comparison with the sender–receiver model, the latent
space model provided similar trends in predictive accuracy for
C. vittiger, but for R. sociabilis plumbeus the latent space model
suffered lower accuracy and it became the worst network con-
struction when only very limited data were available (Fig. 2 and
Fig. S2).

Fig. 1. The observed movement networks and network constructions for
within-field movements of C. vittiger (Upper) on Opuntia cactus (n = 56
patches) and within-breeding season movements of R. sociabilis plumbeus
(Lower) across wetlands within its geographic range in Florida (n = 15 wet-
lands). (A) The observed network, (B) maximum distance, (C) theoretical
kernel, (D) empirical kernel, (E) latent space, and (F) sender–receiver con-
structions for each species. Node size proportional to the log(patch size) and
link grayscale denotes increased relative intensity of observed and predicted
movements. For kernel-based constructions, links greater than the average
link prediction are shown; for latent space and sender–receiver models, link
predictions greater than the threshold used for truncation are shown (based
on maximum κ). Light-colored nodes highlight patches with no links to
other patches.
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We also determined whether these network constructions
could recover the observed landscape structure by contrasting
several network metrics (Table S1) based on the predicted net-
work relative to the observed network (Materials and Methods).
Sender–receiver models consistently recovered the observed
landscape structure and could do so with remarkably little data
on movement, whereas the maximum distance construction was
consistently the worst approach for recovering observed land-
scape structure (Fig. 3). For some network metrics, such as
connectance (i.e., link density), kernel-based methods recovered
the observed structure. We further calculated the metapopulation
lifetime (31) based on these network constructions and found
that the maximum distance construction predicted much higher
metapopulation lifetime for both species than the other network
constructions (Fig. 3).
Although the utility of network constructions for assessing

connectivity lies in their ability to predict linkages in landscapes
(Fig. 2) and reconstruct known connectivity (Fig. 3), the network
constructions we considered differ substantially in model com-
plexity. Consequently, we also compared network constructions
using model selection criteria (SI Text), which explicitly penalize
for model complexity. Using this approach (Table S2), we found
the same rank support for network constructions as we found
when predicting links (Fig. 2), with the one exception being that
the latent space model was the best fit for C. vittiger.

Discussion
Understanding and predicting connectivity are crucial for several
questions in ecology and problems in conservation (14, 16).
Network analysis and associated use of graph theory have been
emphasized as offering a promising approach to connectivity
analysis (10, 11, 13), yet we found that the way in which networks
are constructed profoundly influences the resulting network and
inferences on connectivity and metapopulation persistence. Al-
though there have been several calls to revisit the foundations of
network construction in other disciplines (5), this issue is ex-
tremely relevant to the use of network analysis for assessing
connectivity in ecology.

The primary approach currently being used for problems in
connectivity conservation—what we term the maximum distance
construction—consistently overpredicted connectivity in our
examples, suffered from the lowest accuracy in predicting link-
ages, and could not recover observed connectivity structure. This
approach is frequently used because of the difficulty of collecting
data on movement (e.g., 9, 10, 19). Although estimates from the
maximum distance construction are often referred to as “po-
tential connectivity” to acknowledge that actual connectivity is
not measured (13), we found that this potential bears little
resemblance to actual connectivity in real landscapes. This
approach was worse in predicting linkages and recovering con-
nectivity structure for C. vittiger than for R. sociabilis plumbeus,
which was likely due to the differences in the prevalence of ob-
served movements relative to the number of potential links in
each landscape. This overprediction of connectivity is particu-
larly relevant from a conservation perspective, because it trans-
lates to misleadingly high estimates of metapopulation lifetime in

Fig. 2. The performance of network constructions, based on Cohen’s κ, at
predicting unknown linkages as a function of the amount of data used to
construct the network. See Fig. S2 for other accuracy metrics.

Fig. 3. Standardized network and metapopulation metrics based on dif-
ferent network constructions as a function of the amount of data used to
construct the network. Shown for each metric is a measure of relative de-
viation of the predicted metric to the observed as (xpred – xobs)/xobs. The
number of clusters provides a measure of the number of units within the
network above the scale of patches. Clustering coefficients capture cluster-
ing of movement in networks. Betweenness describes the average number
of shortest paths traveling through a patch, whereas connectance measures
the observed number of links relative to the total possible number of links in
the network. Metapopulation lifetime provides a measure of the predicted
persistence of the network (Table S1).

19284 | www.pnas.org/cgi/doi/10.1073/pnas.1107549108 Fletcher et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107549108/-/DCSupplemental/pnas.201107549SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107549108/-/DCSupplemental/pnas.201107549SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107549108/-/DCSupplemental/pnas.201107549SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107549108/-/DCSupplemental/pnas.201107549SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1107549108/-/DCSupplemental/pnas.201107549SI.pdf?targetid=nameddest=ST1
www.pnas.org/cgi/doi/10.1073/pnas.1107549108


landscape networks. Consequently, the use of maximum distance
constructions for connectivity assessment may overestimate the
viability of metapopulations.
Even in the absence of empirical data on movement, our

results suggest that using a theoretical kernel-based construction
can provide a more viable alternative to a maximum distance
construction. Theoretical kernels, such as the negative expo-
nential distribution used here (11, 16), provide a more realistic
assessment of connectivity by providing less weight to infrequent,
long-distance movements. Other kernel distributions could also
be used to emphasize different types of movement (32).
We found that social networkmodelsmore accurately predicted

linkages and recovered network structure than other construc-
tions. Although these models required empirical movement data,
the models were still more parsimonious (in terms of model se-
lection criteria) (Table S2) than other constructions, and the
sender–receiver model was accurate even when remarkably lim-
ited data on movement were available to construct landscape
networks. The utility of the sender–receiver model for both net-
works was likely due to its ability to capture the highly directional
aspect of observed connectivity and unmeasured heterogeneity of
movements to and from different patches, which is likely common
in many spatial networks in ecology (23, 24). These models also
provide a means to test hypotheses regarding connectivity, such as
the role of patch size or matrix resistance in connectivity. For in-
stance, by accounting for the potential effects of patch size on
movement, the predictive accuracy of the sender–receiver models
increased for both species (Table S3).Nonetheless, link prediction
accuracy from social network models could still be improved
considerably. Future applications of such models may improve
predictions with the addition of other relevant factors (e.g., matrix
resistance, path redundancy) thatmay influencemovement among
patches (e.g., 33).
Social network models may also be useful for other types of

ecological network problems (4, 34), because they provide a gen-
eral and flexible framework for modeling network data. For ex-
ample, Chiu and Westveld (35) recently used such models to
understand the role of phylogeny in food web structure. Such
models may not only advance our understanding of the causes and
consequences of ecological network structure but may also im-
prove conservation and management strategies that rely on
network inferences.

Materials and Methods
Focal Species and Movement Data. The cactus bug C. vittiger (Hemiptera:
Coreidae) is dependent upon prickly pear cactus (Opuntia spp.), where it
feeds, breeds, and aggregates throughout its life. We conducted a mark-
recapture study in central Florida (29.4°N, 82.0°W), USA. In this area, C.
vittiger uses O. humifusa, and has two or three generations per year. Adults
are winged but rarely fly; instead, adult C. vittiger typically walk between
cactus patches through an unsuitable matrix (26). Movements of adults are
thus tractable and localized (Fig. S1) (26).

From September 2008 to December 2009, we censused all cactus patches
(n = 56) in a 30 × 30-m network every 2–3 wk (except winter; 21 total visits),
individually marking all adults using a nontoxic marker; these mark-re-
capture data allow estimation of movements among cactus patches. This
network was not a closed system, but additional recapture rates surrounding
this area were low. We mapped cactus patches (26) within the plot using
a Trimble Global Positioning System (error <0.5 m).

The Everglades snail kite is dependent upon shallow freshwater ecosystems
dominated by sparsely emergent vegetation, with its current range including
suitable marsh and lake littoral habitats within a fragmented network of
geographicallydistinctwetlandunits.Althoughoftendescribedasapanmictic
population (36), short-term movement probabilities among wetlands are
heterogeneous andwithin-breeding seasonmovements appearmore limited.
We focused on within-breeding season movements of kites, because habitat
suitability and prey availability are closely linked to local hydrology and can
change dramatically within breeding seasons (37). Lowwater levels can cause
kites to move in search of suitable habitat (37); these movements are associ-
ated with survival costs for younger, inexperienced individuals (27).

As a part of a long-term capture-mark-resight study, the entire breeding
range of the snail kite in Florida was systematically searched via airboat
during six intra-annual survey occasions, 2005–2009. Much of the population
is banded with individually identifiable color-coded leg bands. During sur-
veys, each detected individual was scanned to determine whether it was
banded and the wetland location of each resighted individual was recorded,
which allows for assessing movements among wetlands (for more details on
field methods, see refs. 27 and 36). All techniques were approved by the
Institutional Animal Care and Use Committee (approval F#149).

Maximum Distance Construction. Most applications of network analysis to
connectivity conservationuse abinarymatrix (with elements pij) that describes
pairwise connections between patches. Frequently, pairwise connections are
assumed if Euclidean or other distance measures (e.g., least-cost distance) are
within the known maximum dispersal distances of a species of interest (9, 10,
19), what we refer to as a maximum distance construction. For both data-
sets, we constructed binary networks using this formulation based on the
maximum observed movement distance taken from the literature (26, 28),
such that when patches i and j were within this maximum distance they
were considered connected (pij = 1), whereas patches beyond this distance
were considered unconnected (pij = 0). Using the maximum distances ob-
served in these datasets (rather than those taken from the literature)
resulted in similar conclusions for C. vittiger and less accurate predictions
for R. sociabilis plumbeus.

Kernel-Based Constructions. We contrasted two kernel-based constructions
for spatial networks. First, we constructed networks assuming a negative
exponential kernel, which is frequently used in metapopulation ecology (16).
We refer to this construction as a theoretical kernel (Eq. 1),

pij ¼ exp
!
− αdij

"
; [1]

where pij is the probability of a link between patches i and j, dij is the Eu-
clidean distance between patches, and α is a scaling factor based on the
average assumed movement distance (Fig. S1 shows movement kernels).
Second, we contrasted theoretical kernels to the distribution of observed
movement distances, what we term an empirical kernel construction. To
allow for seamless comparisons of kernel constructions to the maximum
distance construction, we drew 100 samples from kernels (with replacement)
and for each sample we constructed a binary network based on that dis-
tance, where patches within the distance were considered connected and
patches greater than that distance were considered unconnected.

Social Network Constructions. We modeled movement on spatial networks
using social network models for three primary reasons. First, such models can
predict linkages on relatively large, sparse networks compared with multi-
state models developed specifically for mark-recapture data (38). Second, the
social network models we used allow for different types of movement data
of the exponential family (e.g., binary, Poisson, etc.), which can be directed
or undirected, and covariates regarding both nodes and links. Third, social
network models have been developed to account for a wide variety of link
dependencies that can occur within networks (22) and to leverage such
dependencies to improve predictions. Link dependencies may be common
on landscape networks, such as movements across stepping stones and
movement variation in source-sink dynamics.

Hoff and colleagues (20, 22) have advanced a general latent position,
random graph model for analyzing social networks that is highly relevant
for network analysis in ecology and conservation. We considered two types
of latent position, random graph models: a latent space model and
a sender–receiver model. In the context of landscape connectivity, latent
space models leverage observed similarities in movements within networks
to predict links based on an unobservable or latent connectivity space
(“social space” in social networks) (20). We modeled the probability of ob-
served movement between patches as a Bernoulli distribution with a mean
μij and included distance, dij, between patches (pairwise distances) as the
only fixed covariate in the model to provide direct comparisons with other
constructions. We used a Euclidean distance measure based on similarities of
between-patch movements to estimate latent connectivity space, such that
our model formulation is yij ∼ Bernoulli(pij) and (Eq. 2)

logit
#
pij

$
¼ αþ βdij − jzi − zj j; [2]

where yij is the observed presence or absence of a link (movement) between
patches i and j, α is an intercept, β is the coefficient for distance, and (Eq. 3)
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jzi − zj j ¼

 
XK

k¼1

!
zik − zjk

"2
!1=2

; [3]

where K is the number of dimensions in the Euclidean latent space (in our
examples, we set K = 2) (20, 21). As a consequence, when high rates of
movement occur for patches i and j, Euclidean distances in the latent space
will be small compared with patches with low movement rates. This for-
mulation of latent space is inherently symmetrical (21). Hoff (21) shows that
in a generalized linear mixed-model context, the latent space variable can
be described as a random effect regarding the relational data, z ∼ N(0,
Ik × σ2).

A sender–receiver model can be formulated in a similar way, where
random effects are specified regarding within-patch dependencies and
movement heterogeneity of source and destination patches (sender and
receiver patches) (21) (Eq. 4):

logit
#
pij

$
¼ αþ βdij þ δi þ γj ; [4]

where δ and γ represent random effects of patches regarding emigration (δi)
and immigration (γj) and δ ∼ N(0, σγ2) and γ ∼N(0, σγ2). The sender–receiver
formulation allows for estimating directed movements in networks. The
latent space and sender–receiver models could be integrated into a single
model, but we treated these formulations separately for parsimony in model
building. We also note that a logistic regression model that did not include
these random effects (sender–receiver or latent space effects) was less ac-
curate at predicting linkages than all other constructions for R. sociabilis
plumbeus and was less accurate than both social network models for C.
vittiger. These models were fit through Bayesian Markov chain Monte Carlo;
see SI Text for a description of priors and assessment of model convergence.

Comparing Link Predictions. To assess the ability of different network con-
structions to predict linkages with limited data, we used cross-validation
where we randomly removed 10–80% of the relational data from each
dataset and constructed networks with the remaining data. For each re-
moval amount, we used 100 randomly sampled replicates. We then asked
whether constructions accurately predicted the withheld data. The network
constructions we considered make different types of predictions for links,
including binary predictions and proportion/probability predictions. To
make accuracy assessment comparable among network constructions, we
reduced constructions to binary predictions, which is the most common type
of network used in spatial ecology (9, 10, 19). Maximum distance con-
structions are binary networks, whereas in kernel-based constructions, each
of 100 random draws from the kernel produced a binary network; we report

average estimates for predicting network linkages and structure based on
these samples. Because the latent space and random-effects models provide
predictions of link probability, we truncated these predictions to [0, 1] data,
based on the threshold that maximized Cohen’s κ (39) (SI Text).

We then used Cohen’s κ (κ hereafter), the true skill statistic (TSS), and the
area under the receiver-operating curve (AUC) to assess predictive accuracy
of network constructions (40). κ And TSS each range from −1 to 1, with
values of zero indicating performance no better than random (40). AUC is
a threshold-independent metric that ranges from 0 to 1, with values of 0.5
indicating performance no better than random. We also calculated false-
positive and false-negative error rates for each construction to better in-
terpret the sources of errors when predicting network linkages (Fig. S2).

Comparing the Recovery of Landscape Structure and Metapopulation Mea-
sures.We assessed the potential for various network constructions to recover
observed landscape structure and predict indices of metapopulation persis-
tence. We calculated several metrics that describe connectivity and spatial
structuring at different scales: number of clusters (components), clustering
coefficient, average degree, average betweenness, average shortest path,
and connectance (see Table S1 for definitions and examples of these met-
rics). We also calculated two measures that reflect metapopulation viability:
metapopulation mean lifetime (31) and metapopulation capacity (41) (SI
Text). We do not report average degree, average shortest path, or meta-
population capacity, because these metrics were redundant with other
metrics. The network metrics capture spatial structuring (clustering co-
efficient, number of clusters) and connectivity at different scales (average
betweenness, connectance). Clustering coefficients capture clustering of
movement within networks (29), whereas the number of clusters provides
a measure of the number of units within the network above the scale of
patches (17). We chose betweenness as a measure of local-scale connectivity,
and connectance as a network-scale measure of connectivity. For each
metric, x, we calculate a measure of relative deviation of the predicted value
to the observed value as (xpred – xobs)/xobs (6). Consequently, network con-
structions with deviations close to 0 capture observed network structure.
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SI Text
This supporting information includes: (i) a model selection
approach for comparing among network constructions; (ii) de-
scriptions of priors in hierarchical formulations of social net-
work models and assessments of model convergence; (iii)
accuracy assessments based on the true skill statistic, area under
the receiver-operating curve (ROC), and false-positive and
false-negative error rates; (iv) description of metapopulation
metrics used for assessing population-level effects of predicted
connectivity; (v) descriptions of network connectivity metrics;
and (vi) empirical and theoretical movement kernels for the two
networks.

1. Model Selection Comparison. The network constructions we
considered differ dramatically in model complexity. Whereas the
cross-validation approach shown in Fig. 2 implicitly penalizes for
model complexity (i.e., an overly complex model is unlikely to
generalize to new situations), this approach did not explicitly
penalize for model complexity. Consequently, we also contrasted
constructions based on model selection criteria that directly
penalize for model complexity rather than assess models based
on cross-validation alone.
We comparedmodels by using maximum likelihoodmethods to

fit each network construction: maximum distance, theoretical
kernel, latent space, and sender–receiver model. Note that we do
not formally compare the empirical kernel shown in Figs. 2 and 3
to the other constructions, because it is a nonparametric for-
mulation based on sampling the observed movement distances.
We use likelihood-based estimation for model selection com-
parisons rather than Bayesian methods, because the use of model
selection criteria is more debated with Bayesian estimation than
with likelihood-based estimation (refs. 1–4 and accompanying
discussion). Furthermore, we compared social network models
by parameterizing random effects as fixed effects. We used this
approach because model selection with random effects, particu-
larly when interest is on conditional prediction (using random
effects estimates to improve subject-specific predictions, as was
the case here), is not resolved regarding estimation of the ap-
propriate number of effective parameters for penalizing like-
lihoods (i.e., the number of effective parameters lies between 1
and R, where R is the number of random effects) (5, 6). Re-
formulating the likelihoods with fixed effects avoids the difficulty
of model selection with random effects based on conditional in-
ference, and it is conservative for model selection in the sense
that social network models will be penalized more by using fixed
effects than with selection criteria using random effects (5, 6). We
used Akaike’s information criterion (AIC) to compare among
network constructions (7), but note that the Bayesian information
criterion provided similar results.
Likelihood of the maximum distance construction. The likelihood
functions for each of these network constructions can be derived
from the likelihood for a Bernoulli distribution, with the differ-
ences among constructions being howwe constrain the probability
of a link, p. The maximum distance construction can be described
as a Bernoulli model, where an observed link between patches
i and j is a success (xij = 1) and there are n × (n − 1) possible
links observed, where n is the number of patches. The maximum
distance can be considered a fixed, categorical covariate. In this
case, the likelihood can be described as (Eq. S1)

L
!
θjX ;Y

"
¼ ∏

n× ðn− 1Þ

ij¼1
pxijij

!
1− pij

"1− xij
[S1]

and (Eq. S2)

logit
!
pij
"
¼ β1dmax; [S2]

where dmax = 1 when the distance between patches i and j is less
than the maximum known movement distance and dmax = 0 when
the distance between patches is greater than the maximum
known movement distance, Y is the connectivity matrix of the
observed data regarding the presence or absence of links, X is
the covariate(s) considered (dmax in this case), and θ are the
parameters to be estimated (β1 for this case).
Based on the maximum movement distances reported in the

literature (8, 9), we defined dmax as 52 m forChelinidea vittiger and
225 km for Rostrhamus sociabilis plumbeus. Because the conven-
tional approach in the literature is to assume pij = 1when dij< dmax
and pij = 0 with dij > dmax, we fixed β1 in Eq. S2 to produce such
predictions (β1 = 7, such that pij = 0.99 when dij< dmax). Note that
using this literature-driven approach is not likely the maximum
likelihood estimate (MLE) for β1 in this model; we also contrast
this model to a model based on the MLE of β1 (Table S2).
Likelihood of the theoretical kernel construction. The theoretical kernel
constructioncanalsobedescribedasaBernoullimodel. Inthiscase,
the likelihood function is the same as Eq. S1, but we alter Eq. S2 to
include the nonlinear function shown in Eq. 1 of the text. Because
Eq. 1 bounds pij on the 0–1 interval, we did not use a logit link
function. Again, we contrast the likelihood of the model when
using α taken from the literature. As with the maximum distance
construction, using the literature-driven approach for estimating α
is not likely theMLE for thismodel; we also contrast amodel using
the estimate of the maximum likelihood of α.
Likelihood of the latent space model. In the latent space model, the
likelihood function is the same as Eq. S1, but we constrain the
probability of a link based on Eqs. 2 and 3 of the text. For direct,
likelihood-based comparisons, we fit this model using the maxi-
mum likelihood procedure described in ref. 10, where the latent
space is considered a fixed effect rather than a random effect.
Initial values for the latent space parameters were taken using
multidimensional scaling on the Euclidean similarity matrix (10).
Likelihood of the sender–receiver construction. In the sender–receiver
model, the likelihood function is the same as Eq. S1, but we
constrain the probability of a link based on Eq. 4 of the text. The
sender–receiver random effects can be recast in the context of
fixed, patch-specific effects of emigration and immigration to
estimate likelihoods and model selection criteria comparable
with other network constructions.
Model selection results.We found that for both species, variation in
AIC among network constructions (Table S2) showed similar
patterns to that of their predictive accuracy (shown in Fig. 2), and
that there was strong support for social networkmodels compared
with other network constructions. For C. vittiger, the primary
difference was that the latent space construction fit the data
better than the sender–receiver model, whereas with assessments
based on cross-validation, the sender–receiver construction was
slightly better at predicting links. For R. sociabilis plumbeus, the
rank order of network constructions based on AIC was the same
as for cross-validation. We note that for both species, estimates
taken from the literature for both the maximum distance and
theoretical kernel constructions had much worse fit to the data
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than the maximum likelihood estimates for those constructions
(Table S2). See Table S3 for further comparison of social net-
work models that included patch-size effects.

2. Priors Used in Hierarchical Formulation of Social Network Models
and Interpreting Model Convergence. For network predictions
shown in Figs. 2 and 3, we used a Bayesian formulation of social
network models and Markov chain Monte Carlo (MCMC) meth-
ods (4, 10, 11). In a Bayesian context, the latent space model
can be described as a hierarchical model, as shown in Eqs. 2
and 3 of the text. Using the methods in refs. 11 and 12, priors for
the fixed effects were N ∼ (0, 9). The latent space distance, Z =
jzi – zjj, is specified as a multivariate normal distribution, Z ∼
MVNk(μ,σz2Ik), where K is the number of dimensions in the la-
tent space and Ik is a K × K identity matrix. Hyperpriors for this
latent space were μ ∼ MVNk(0,ω2Ik) and σz2 ∼ σ20,zInvχ2α,z,
where α is the degrees of freedom for the inverse χ2 distribution
and σ02 is a scaling factor (11, 12). The scaled inverse χ2 distri-
bution can be shown as being a special case of the inverse gamma
distribution (13). Following refs. 11 and 12, hyperparameters
were initially set to σ20,z = 1/8(n)K/2, αz = n1/2, and ω2 = 1/4(n)K/2,
where n is the number of patches (nodes).
In a Bayesian context, the sender–receiver model can also be

described as a hierarchical model, as shown in Eq. 4 of the text.
Using the information in refs. 11 and 12, priors for the fixed effects
were N ∼ (0, 9) and the hyperpriors were specified as σδ2 ∼
αδσ20,δInvχ2α,δ and σγ2 ∼ αγ σ20,γInvχ2α,γ. Using suggestions in refs.
11and12, hyperparameterswere initially set toαδ=3andσ20,γ=1.
We used the Raftery–Lewis diagnostic (12, 13) to tune model

runs, resulting in 10,000 samples for burn-in and 50,000 iterations,
saving every 10th sample for estimating the posterior distributions.
We assessed model convergence using the Gelman–Rubin di-
agnostic (14), calculated on the basis of two MCMC chains.
This diagnostic compares posterior distributions between MCMC
chains for each parameter in the model; at convergence, this di-
agnostic is∼1.A commonrule is that convergence is likelywhen the
diagnostic is<1.1 (15).Forbothnetwork constructions,weassessed
convergence as a function of the amount of data removed (0–80%).
For all parameters and amounts of data removed, Gelman–

Rubin diagnostics were 1.0–1.012 for C. vittiger, suggesting model
convergence. Similarly, Gelman–Rubin diagnostics ranged be-
tween 1.0 and 1.06 for R. sociabilis plumbeus across all parameters
and amounts of data removed, suggesting model convergence.

3. Accuracy Assessments of Network Constructions. A challenge
regarding the comparison of different network constructions for
predicting links is how to seamlessly compare constructions that
make predictions on different scales. In the network constructions
we considered, the maximum distance construction made binary
predictions, the kernels also made binary predictions for each
sample from the distribution (which could be summed to provide
proportions or could be assessed at the sample level), and social
network constructions predicted probabilities ranging between
0 and 1. Our validation data were binary data regarding the
presence or absence of an observed link. Whereas the maximum
distance construction and kernel constructions could be assessed
directly against the binary validation data, the social network
constructions could not.
Three common solutions are often used to compare model

probabilities to binary validation data: (i) use a threshold-in-
dependent measure for comparing observed data versus model
predictions; (ii) use some sort of pooling, such as “calibration
plots,”where one compares the frequency of observed links to the
probabilities that are predicted; and (iii) use a threshold to di-
chotomize predictions. Themost common threshold-independent
measure for assessing predictive accuracy is the area under the
receiver-operating curve (AUC), and this measure has been used
recently in comparing link predictions in other contexts (16, 17).

However, the AUC has less value for models making binary pre-
dictions (18), such that it is less appropriate to compare AUCs for
the social network models with AUCs for the other network con-
structions. Assessments using calibration plots can be qualitatively
useful, but require pooling and are still limited for comparing
among network constructions and summary statistics regarding
network structure (Fig. 3). Using a threshold to dichotomize
predictions was the most natural solution to allow assessments at
the individual link level, because the use of thresholds in the val-
idation of probabilistic models is common across disciplines (19)
and provides a means to seamlessly compare among all of the
network constructionswe considered by truncating probabilities to
binary predictions, consistent with other network constructions.
However, we also provide an AUC for comparisons among other
recent attempts to predict links in networks (16, 17).
Decisions for selecting thresholds have received a considerable

amount of interest, particularly in species distribution modeling,
which has similar challenges regarding model validation as the
network constructions we considered (20, 21). Freeman and
Moisen (21) found that choosing a threshold that maximizes Co-
hen’s κ worked well, particularly in situations where a goal is to
preserve observed prevalence, or the observed proportion of links
observed (i.e., connectance in binary networks), in predictions
(22). κ measures the proportion of correctly classified links after
accounting for the probability of chance agreement (19). Conse-
quently, we selected thresholds that maximized κ for each species
to dichotomize predictions of social network constructions.
With these thresholds, we then used four metrics for predictive

accuracy assessment: Cohen’s κ, the true skill statistic, false-
positive error rates, and false-negative error rates. κ has a long
history of use in assessing accuracy of maps (23). The true skill
statistic (TSS) is frequently used in the medical literature (18).
TSS has a similar interpretation as κ, but is thought to be less
sensitive to prevalence. Both κ and TSS assess overall predictive
accuracy; we also considered false-positive and false-negative
error rates to better interpret the sources of prediction error.

4. Metapopulation Measures. We used two relevant metapopulation
measures aimed at predicting metapopulation viability: the meta-
populationmean lifetime (24) and themetapopulation capacity (25).
Both of these measures focus on extinction–colonization dynamics
in metapopulations and can be applied to the predicted network
constructions to make inferences regarding the differences among
network constructions in the predicted viability of metapopulations.
Metapopulation mean lifetime. The metapopulation mean lifetime is
derived from a stochastic metapopulation model that aims to
approximate the viability of metapopulations. This model was
initially developed by Frank and Wissel (24) and later extended
to metapopulations on complex networks (26, 27).
This model starts by assuming that the extinction rate v of a

local patch i can be described as (Eq. S3)

vi ¼ εA− η
i ; [S3]

whereAi is the area of patch i, ε is a parameter relating tominimum
patch size, and η is a scaling parameter that describes the relative
amount of environmental variation on population growth, where
a smaller value indicates more environmental variability and thus
relatively larger local extinction rates. Aggregate local extinction
rates of patches for the metapopulation can be described as the
geometric mean of location extinction rates (Eq. S4):

v ¼ ∏
n

i¼1
v1=ni : [S4]

Kininmonth et al. (27) described colonization ability of patch i
from other patches using a “strength” network measure, or
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a valued measure regarding the sum of link values for each patch
(analogous to degree) (Table S1), wij, on a network as (Eq. S5)

uini ¼ 1
μ

 
Xn

j¼1

wij

vj

!
; [S5]

where μ is the number of immigrants required for successful
colonization (in our application, we simply set μ = 1). In the
context of the network constructions assessed here, the strength
is the predicted value, pij, of the link based on the network
construction. Note that this weighs the flow/movement from j
to i by the local extinction risk of j. Similarly, the colonization
strength of patch i on other patches can be described as (Eq. S6)

uouti ¼ 1
μvi

 
Xn

j¼1
wij

!
: [S6]

The harmonic mean of uouti and uini for each patch is then (Eq. S7)

Ui ¼
#
1
2
$
uini

%− 2þ1
2
$
uouti

%− 2
&− 1=2

: [S7]

The aggregated colonization:extinction ratio is calculated as the
geometric mean of Ui for each patch (26, 27) (Eq. S8):

q ¼ ∏
n

i¼1
U1=n

i : [S8]

With these measures, themetapopulation mean lifetime (MLT) is
approximated as (24, 26, 27) (Eq. S9)

MLT ¼ 1
v

Xn

i¼1

Xn

k¼i

1
k

#
ðN − iÞ!
ðN − kÞ!

&
1

ðN − 1Þk− i q
k− i: [S9]

We calculated log10(MLT) for each of the network constructions
and compared it to the log10(MLT) using the observed connec-
tivity matrix. After setting μ = 1, there were two additional pa-
rameters in the model: ε and η. We considered 1 < ε < 10 and
0.05 < η < 1 (cf. 27). In all comparisons, the relative magnitude
of differences among network constructions was similar. In Fig.
3, we report results where ε = 5 and η = 0.5.
Metapopulation capacity.As an alternative to metapopulation mean
lifetime, we also considered what has been termed the “meta-
population capacity” by Hanski and Ovaskainen (25). This
metric has a similar goal as the metapopulation mean lifetime,
but it is a relative metric that assumes deterministic extinction.
Nonetheless, it has proven useful and does not have additional
free parameters, like the metapopulation mean lifetime de-
scribed above.
The metapopulation capacity was defined in ref. 25 as the

leading real eigenvalue of an area-weighted connectivity matrix
M consisting of the following elements (Eq. S10):

mij ¼ exp
$
− αdij

%
AiAj [S10]

and mii = 0. We calculated the metapopulation capacity using
the predicted connectivity matrix (with elements pij) for each
network construction instead of exp(−αdij), multiplied by AiAj.
Metapopulation capacity was highly correlated with meta-
population mean lifetime (r > 0.93), so we only show results of
metapopulation mean lifetime.
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Fig. S1. Observed movement distributions (gray bars) and theoretical kernels taken from the literature for C. vittiger (Upper) and R. sociabilis plumbeus
(Lower). Theoretical kernels based on a negative exponential function, where the probability of a linkage, pij, between two patches is exp(−αdij). We calculated
α as the inverse of the average movement distance observed in the literature (Materials and Methods).
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Fig. S2. Alternative accuracy assessment metrics for predicting linkages in each network construction as a function of the amount of data used to construct
the network for C. vittiger (Left) and R. sociabilis plumbeus (Right). Shown are the true skill statistic and the AUC as measures of overall prediction accuracy and
false-positive and false-negative error rates.
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Table S1. Descriptions of network connectivity metrics andmetapopulation measures considered and examples of their use in spatial ecology

Metric Description (examples in spatial ecology)

Number of clusters Simply the number of clusters or components in a network. A cluster or
component is a group of interconnected nodes for which a path exists
between every pair of nodes. Paths between nodes can be either direct or
indirect connections (1–3).

Clustering coefficient Characterizes transitivity in the network by measuring the number of
triangles, or the situation where if patch i is connected to j and j is
connected to k, then i and k are connected (3–5).

Degree* The number of direct (immediate) links to a node (4, 6, 7).
Betweenness Number of geodesics going through a focal node. The geodesic (or shortest

path between patches i and j) can be calculated as either the path that
traverses the shortest number of links between the two nodes or the path
that minimizes the sum of the weights of the links in the path (7, 8).

Shortest path distance* The length of the geodesic, measured as either the number of links traversed
or the total distance traversed (5, 9).

Connectance Ameasure of link density, or the number of observed links relative to the total
possible number of links in a network (3).

Metapopulation mean lifetime An approximation formula of metapopulation viability in heterogeneous
landscapes, assuming stochastic extinction–colonization dynamics (10–12).

Metapopulation capacity The leading, real eigenvalue of an area-weighted connectivity matrix.
Measures the relative safety of a metapopulation from deterministic
extinction (13).

*Degree and shortest path distance are not reported, because they were redundant (r > 0.97) with connectance and the number of clusters, respectively. In
addition, metapopulation capacity is not reported, because it was redundant with metapopulation mean lifetime (r > 0.93).
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Table S3. Predictive accuracy and model selection, based on the AIC, for each network to test for
patch-size effects influencing the probability of a link (movement) between patches in the
network

Network construction ΔAIC AUC κ TSS

C. vittiger
Sender–receiver 21.9 0.882 0.293 0.328
Sender–receiver + sizesender 16.5 0.887 0.270 0.369
Sender–receiver + sizereceiver 5.3 0.876 0.263 0.307
Sender–receiver + sizesender + sizereceiver 0.0 0.899 0.314 0.383

R. sociabilis plumbeus
Sender–receiver 0.0 0.778 0.272 0.310
Sender–receiver + sizesender 0.9 0.800 0.397 0.370
Sender–receiver + sizereceiver 2.0 0.789 0.284 0.307
Sender–receiver + sizesender + sizereceiver 2.8 0.786 0.294 0.329

We compared the sender–receiver model shown in Figs. 2 and 3, because it had higher predictive accuracy than
the latent space model. Predictive accuracy based on cross-validation using 50 replicate samples with replacement,
where 80% of the data were used for model building and 20% were used for model testing (external validation).
ΔAICi, AIC for construction i minus the minimum AIC of the models considered; κ, Cohen’s κ.

Table S2. Model selection, based on the AIC, for each network construction predicting the
probability of a link

P −2LL AIC ΔAIC

C. vittiger
Maximum distance from literature 1 42,411.6 42,413.6 42,001.0
Maximum distance (MLE) 1 519.4 521.4 108.8
Theoretical kernel from literature 1 1,527.2 1,529.2 1,116.6
Theoretical kernel (MLE) 1 629.0 631.0 218.3
Latent space 111 190.6 412.6 0.0
Sender–receiver 112 215.4 439.4 26.7

R. sociabilis plumbeus
Maximum distance from literature 1 1,914.8 1,916.8 1,789.6
Maximum distance (MLE) 1 221.8 223.8 96.5
Theoretical kernel from literature 1 192.6 194.6 67.4
Theoretical kernel (MLE) 1 180.0 182.0 54.8
Latent space 29 102.2 160.2 33.0
Sender–receiver 30 67.3 127.3 0.0

Fixed effects analysis was used for all network constructions to facilitate accurate model selection comparisons.
Using fixed effects in social network constructions is more conservative than using random effects (i.e., it will
generally penalize latent space and sender–receiver models more than formulating models with random effects)
but avoids the debate of how to contrast models based on conditional inference. See Hoff et al. (1) for a discussion
on identifying the number of estimated parameters in the latent space model. −2LL, −2× the log likelihood (the
deviance); AIC, −2LL + 2P; ΔAICi, AIC for construction i minus the minimum AIC in the candidate network con-
structions that we compared; P, number of estimated parameters. Smaller AIC values reflect more parsimonious
constructions given the observed data. The total number of possible links being modeled for C. vittiger is 3,080,
and the total number of possible links being modeled for R. sociabilis plumbeus is 210.
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