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Summary

1. Conservation goals are ideally set after a thorough understanding of potential threats;

however, predicting future spatial patterns of threats, such as disturbance, remains challeng-

ing. Here, we develop a novel extension of network fortification–interdiction models (NFIM)

that deals with uncertainty in future spatial patterns of disturbance by optimally selecting

sites that will best mitigate a worst-case scenario for a given magnitude of disturbance.

2. This approach uses information on between-patch movement probabilities and patch-

specific survival, which can be estimated from mark–recapture data, to optimize life expec-

tancy. Optimization occurs in three interrelated stages: protection, followed by disturbance

and then assessment.

3. We applied the modelling approach to two mark–recapture data sets: roseate terns Sterna

dougallii in the north-eastern United States and the Everglade snail kite Rostrhamus sociabilis

plumbeus in Florida. We contrasted the results to a more conventional approach of protecting

sites that maximize connectivity (by minimizing the distances among protected sites) and a bi-

objective model that maximizes connectivity and the number of individuals under protection.

4. Protecting sites that best mitigate future worst-case disturbance scenarios consistently

resulted in higher predicted life expectancies than protecting patches that minimize dispersal

distance. Predicted life expectancy was similar between NFIM and the bi-objective model for

the small roseate tern network, yet the NFIM predicted higher life expectancy than any of

the scenarios in the bi-objective model in the snail kite network.

5. Synthesis and applications. This application of interdiction models prescribed a combina-

tion of patches for protection that results in the least possible decrease in life expectancy. Our

analyses of the snail kite and roseate tern networks suggest that managing to protect these

prescribed patches by the network fortification -interdiction models (i.e. protecting against the

worst-case disturbance scenario) is more beneficial than managing patches that minimize dis-

persal distance or maximize the number of individuals under protection if the conservation

goal is to ensure the long-term persistence of a species.

Key-words: conservation planning, disturbance, life expectancy, movement, network

fortification -interdiction, optimization, spatial networks, spatial prioritization, survival

Introduction

There is an urgent need for conservation strategies that

can help ameliorate the expected impacts of large-scale

biodiversity threats, such as human-induced habitat loss

and global climate change (Sala et al. 2000). Yet, much

uncertainty exists about future threats and their ecological

consequences owing to a lack of complete knowledge

about how these threats will affect ecological processes

driving biodiversity patterns. Failing to account for these*Correspondence author. E-mail: miguel.acevedo7@upr.edu
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uncertainties may result in the suboptimal allocation of

limited resources and inadequate conservation and man-

agement actions (Regan et al. 2005).

Managing networks of protected areas is a common con-

servation strategy to ensure the long-term persistence of

biodiversity (Margules & Pressey 2000). Often, these net-

works are designed under a systematic conservation plan-

ning framework that employs mathematical models to

determine an optimal set of geographical regions to protect

for a given conservation objective and budget (Cabeza &

Moilanen 2001). Recently, the focus of these optimization

models has shifted from pattern-based objectives, such as

the maximization of species representation (e.g. O’Hanley,

Church & Gilless 2007a,b), to process-based objectives that

drive long-term species persistence and ecosystem function-

ing, including demographic processes (Klein et al. 2009).

The preservation of demographic processes allows for a

more biologically meaningful assessment of threats while

making fewer assumptions about species–habitat associa-

tions (Klein et al. 2009).

In spatially structured populations, local demographic

processes are coupled by movement. The importance of

facilitating movement has been acknowledged in spatial

prioritization by applying models (Moilanen, Leathwick

& Elith 2007; Moilanen, Wilson & Possingham 2009) that

prioritize actions to protect sites that minimize dispersal

distance (e.g. Ball, Possingham & Watts 2009). The ratio-

nale behind this idea is that sites that are closer to each

other have higher colonization and re-colonization rates,

and lower extinction rates due to rescue effects, ultimately

leading to greater long-term viability (Hill, Hastings &

Botsford 2002; Doerr, Barrett & Doerr 2011). Therefore,

minimizing dispersal distance is often viewed as a precau-

tionary way of dealing with uncertain future patterns of

disturbance (Doerr, Barrett & Doerr 2011).

Epistemic uncertainty, related to lack of knowledge

or data, can arise from multiple sources including lim-

ited biodiversity data and lack of a thorough under-

standing of potential threats (Regan, Colyvan &

Burgman 2002; Pressey et al. 2007). Uncertainty analysis

methods, such as sensitivity analysis and information-

gap approaches, are promising ways to address epis-

temic uncertainties arising from limited biodiversity data

(Regan et al. 2005; Moilanen et al. 2006b; Kujala,

Burgman & Moilanen 2013). Yet, accounting for uncer-

tainty arising from limited understanding of threats

remains a major challenge.

There is high uncertainty associated with predicting the

spatial location of future disturbances because proximate

threats, such as land-use change and over-harvesting, have

their roots in complex political and socio-economical pro-

cesses (ultimate threats) that result in complex spatial pat-

terns of disturbance (Pressey et al. 2007). In addition,

spatially structured populations are vulnerable to natural

disasters, which may also cause spatially complex patterns

of disturbance that are difficult to predict. How can con-

servation strategies prioritize actions to protect areas that

will best maintain demographic processes given high

uncertainty in future spatial disturbance patterns?

Network fortification -interdiction models (NFIM) are

applied in military applications and are gaining relevance

in conservation planning due to their ability to incorpo-

rate uncertainty in future threats. For example, O’Hanley,

Church & Gilless (2007a) used these type of models to

incorporate uncertainty in reserve designs that minimize

patterns of species loss by selecting low-risk and high-

value sites. Here, we describe a novel application of

NFIMs that selects an optimal set of sites to protect that

will best mitigate a worst-case disturbance scenario for life

expectancy. Allocating limited resources to protect against

a worst-case scenario follows the precautionary principle

in conservation biology (Cooney & Dickson 2005) and

may be more meaningful than protecting against an

uncertain average scenario of environmental change. It is

increasingly apparent that extreme events of weather and

climate have more profound effects on populations rather

than average changes (e.g. Reichert et al. 2012). This

approach complements existing tools such as Marxan that

optimize species representation (e.g. Ball, Possingham &

Watts 2009). This approach optimizes a life expectancy

measure that is highly related to the persistence of spa-

tially structured populations, and incorporates uncertainty

in future spatial patterns of disturbance.

We introduce the modelling framework and apply it to

two empirical systems, roseate tern Sterna dougallii colo-

nies in the eastern United States and the Everglade snail

kite Rostrhamus sociabilis plumbeus, to illustrate its appli-

cation and highlight the assumptions, sensitivity and

potential extensions for a variety of conservation prob-

lems. We compare this approach to a prioritization

approach that minimizes dispersal distance, which is com-

monly employed to accommodate future uncertainties in

spatial patterns of disturbance (Doerr, Barrett & Doerr

2011). We also make a further comparison with a bi-

objective model that minimizes dispersal distance while

maximizing the number of individuals under protection.

Materials and methods

NETWORK FORTIF ICATION–INTERDICTION MODEL

Ecological spatial networks consist of nodes that represent dis-

crete spatial locations such as forest patches, grasslands, ponds,

or animal colonies, and links (or arcs) that describe the flow of

individuals between node pairs, typically the presence of potential

movement or probability of movement between nodes (Fletcher

et al. 2011). Arcs and nodes may be vulnerable to disturbances as

a consequence of human activities or natural disasters. These dis-

turbances may decrease habitat quality, resulting in decreases in

survival rates and changes in movement patterns (e.g. Phillips &

Alldredge 2000; B�elisle, Desrochers & Fortin 2001).

Network fortification -interdiction models are applied in mili-

tary and anti-terrorism scenarios to assess network vulnerabilities

and plan protective measures when uncertainty about potential

threats is high (Brown et al. 2006; Smith 2010). In ecological

© 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society, Journal of Applied Ecology, 52, 1588–1597
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spatial networks, these vulnerabilities refer to regions that, if dis-

turbed, will cause the most harm to the biological processes driv-

ing biodiversity patterns. The goal of NFIM is to select an

optimal set of sites that, if protected (i.e. fortification), would

minimize the worst disturbance that can happen to the demo-

graphic processes of interest (i.e. interdiction). These models are

applicable to conservation scenarios in which a decision-maker is

concerned with designing a robust network of protected areas

that will best maintain the biological processes of interest after

any possible spatial combination of disturbances.

The modelling approach consists of three interrelated stages: a

protection, disturbance and assessment stage. Solving the opti-

mization problem requires the protection stage to occur first,

which involves the protection of a limited set of patches in antici-

pation of future disturbances. Next, the disturbance stage takes

place, in which a subset of unprotected patches is disturbed in a

manner that minimizes life expectancy. Finally, the third stage

assesses life expectancy, given the set of disturbed patches. Hence,

the third stage depends on the selected disturbance actions in the

second stage, which depends on protection decisions made in the

first stage (noting that protected patches cannot be disturbed).

For clarity, below we first describe the assessment stage, then the

disturbance stage and finally the protection stage.

Assessment stage: estimating life expectancy

The assessment stage estimates life expectancy (objective to opti-

mize) using patch-specific survival, site fidelity, and between-patch

transition probabilities estimated from mark–recapture data (e.g.

Hestbeck, Nichols & Malecki 1991). This measure describes the

amount of time (i.e. number of time steps) an individual remains

alive in the network. Long-term population persistence can be

influenced by a variety of vital rates depending on the species; how-

ever, many sensitivity analyses suggest that population growth is

generally sensitive to adult survival because of the high variability

related to other vital rates such as fecundity (Pfister 1998). Site fide-

lity is positively correlated with population persistence in pre-

dictable environments when individuals decide to remain due to

favourable conditions (Schmidt 2004). In contrast, movement may

be advantageous when conditions in a patch are less favourable,

increasing long-term persistence for moderate levels of spatial vari-

ation (Hill, Hastings & Botsford 2002). Therefore, our measure of

life expectancy is an appropriate conservation objective to optimize

due to its ability to summarize three meaningful demographic pro-

cesses: survival, site fidelity and movement, which are closely

related to long-term population persistence.

Life expectancy is commonly quantified in demographic popula-

tion models by using a stage- or age-based transition matrix that

describes the probabilities of surviving and moving between stages

(e.g. Tuljapurkar & Horvitz 2006). Here we developed a new spa-

tial application in which the transition matrix describes three

potential transitions: dying, surviving and staying in the same

patch, or surviving and moving to a different patch. The transition

matrix used to estimate life expectancy represents a reducible Mar-

kov chain because it has an absorbing state corresponding to mor-

tality (Ross 2006). To describe this Markov chain, we consider a

landscape composed of discrete patches denoted by

N ¼ f1; . . .; jN jg. Each patch is characterized by patch-specific

survival Si (before moving). To account for between-patch survival

and between-patch movements, the Markov chain contains

jN j þ 1 states, where the additional state is an absorbing state d

(i.e. all sites plus death) that describes mortality; hence,

M ¼ N Sfdg denotes the set of all Markov states. The transition

matrix associated with this Markov chain is represented by Q,

comprised of elements qij that describe the probability that an

organism transitions from state i to state j (in one step), for all

i; j 2 M. Mortality (i.e. moving to state d) is represented by the

transition qid ¼ 1� Si; 8i 2 N . Disturbance to any patch will

change these transition probabilities (as described below).

Let n be a jN j-dimensional column vector whose ith element,

ni, describes abundance in patch i and let A be the submatrix of

Q obtained by removing the row and column of Q corresponding

to state d (Ross 2006). Life expectancy z is calculated as:

z ¼ nTðI� AÞ�11; eqn 1

where I is the jN j � jN j identity matrix and 1 is the jN j-dimen-

sional column vector of all ones. See Appendix S1 (Supporting

information) for additional mathematical details of the assess-

ment stage. This measure of life expectancy uses the distributions

of patch-specific abundances to inform the initial conditions in

the Markov chain, but these abundances are not updated after

disturbance. Life expectancy increases when patches associated

with high survival have also high abundances, because more indi-

viduals are subject to the favourable conditions in that patch. In

contrast, life expectancy decreases if patches with low survival

have higher abundances (e.g. an ecological trap), because more

individuals are subjected to the unfavourable conditions in these

patches. When patch-specific abundance information is unavail-

able, we can weight all patches equally.

Disturbance stage: worst-case scenario

In this stage, the model selects a limited number of unprotected

patches to disturb, with the objective of minimizing life expec-

tancy (i.e. worst-case scenario). Disturbance actions may vary

depending on the system and may include habitat alteration,

introduction of exotic species, over-harvesting, pollution, diseases,

parasitism or any action that decreases habitat quality for which

we can develop protective measures (Sutherland 1998; Johnson

2007). Disturbance actions can decrease patch quality, affecting

demographic processes in multiple ways. For instance, decreasing

patch-specific survival is one of the most common demographic

consequences of decreasing patch quality (Phillips & Alldredge

2000; Griffen & Drake 2008). Also, in many species, organisms

respond by avoiding these disturbed areas (Gilliam & Fraser

2001; Dodd, Ozgul & Oli 2006). These demographic consequences

of disturbance are captured in the model by changing the transi-

tion probabilities in the Markov chain, resulting in a decrease in

patch-specific survival, site fidelity and/or movement to disturbed

patches. When a patch is disturbed, the mortality probability of

an individual living in that patch increases by the same amount

that the probability of surviving and staying or moving to

another patch decreases.

In general, the updated transition probabilities as a function of

disturbances are computed as:

qij ¼
�qijð1� aijyj � bijyi þ qijyiyjÞ if i; j 2 N
�qij þ

P
k2N

�qikðaikyk þ bikyi � qikyiykÞ if i 2 N and j ¼ d

�qij if i ¼ d and j 2 M;

8><
>:

eqn 2

© 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society, Journal of Applied Ecology, 52, 1588–1597
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where �qij represents the initial transition probabilities in the Mar-

kov chain between patches i and j as estimated from mark–recap-

ture data and qij the updated transition probabilities after

disturbance. Recall that patch i represents the focal patch, and

patch j represents another state in the network to which individu-

als in i can transition (including all other patches and mortality

state d). Also, individuals in j can contribute with immigrants to

i. Binary variables yi describe disturbance actions, where yi = 1 if

patch i is disturbed and 0 otherwise. Parameters aij and bij repre-
sent the magnitude of decrease in habitat quality (i.e. how �qij
changes) given that patch j and/or i is disturbed, respectively.

Parameter qij is used in two ways. First, qij is used as a correction

term when both patches are disturbed (i.e. yi = 1 and yj = 1), to

ensure that qij ≥ 0. Secondly, if patch i is disturbed, the updated

probability of staying in the same patch decreases proportionally

to qii, because we set aii = bii = 0 (see Appendix S2).

The optimization problem in this stage is constrained by four

rules. First, no protected patch can be disturbed. Secondly, the

number of patches that can be disturbed (i.e. disturbance budget)

is no more than b. Thirdly, the life expectancy of an individual

currently at patch i, denoted by hi, is calculated according to the

Markov chain. Fourthly, variables representing disturbances (i.e.

yi) are binary. Note that yi is an indicator variable, while the

magnitude of disturbance is captured by qij. The set of all distur-

bances that satisfy these constraints is denoted by YðwÞ, where w

is an jN j-dimensional vector whose ith element, wi, describes the

decision of whether or not to protect patch i. Observe that YðwÞ
is a function of w, because no protected patch can be disturbed.

The optimization model in this stage seeks to minimize life expec-

tancy and can be written as:

min
y2YðwÞ

X
i2N

nihi; eqn 3

where y is an jN j-dimensional vector whose ith element corre-

sponds to yi. We select an optimal set of patches to disturb by

means of the mixed-integer linear program which is detailed in

Appendix S3.

Protection stage

The protection stage prescribes an optimal set of patches to pro-

tect that maximizes life expectancy, given that a worst-case dis-

turbance of unprotected patches will occur. No more than u

patches can be protected. Hence, this problem has a max-min

objective: the protection stage maximizes the minimum life expec-

tancy resulting from the disturbance stage. Protection measures

include actions that prevent patch deterioration such as legislat-

ing against future development, reducing human use (e.g. limiting

fishing or hunting), managing for fire, invasive species or control-

ling predator populations.

Protected patches cannot be disturbed (e.g. if patch i is pro-

tected, then yi = 0); however, transition probabilities of protected

patches may be indirectly affected through their interaction with

disturbed patches. For instance, if both patches i and j are pro-

tected, transition probability qij will remain unchanged after dis-

turbances occur in other patches. In contrast, if patch j is

disturbed (but not patch i), then individuals living in i may tend

to avoid patch j, resulting in a decrease in the probability of

movement from i to j. This decrease in movement from patch i

will result in an increase in mortality of the same magnitude as

the decrease in movement (Rose et al. 2001), because probabili-

ties need to sum to unity.

The optimization problem in this stage can be written as:

max
w2W

min
y2YðwÞ

X
i2N

nihi; eqn 4

where W is the set of all protection measures that satisfy the pro-

tection budget constraint and the binary restrictions on variables

wi, 8i 2 N . See Appendix S4 for further details.

GENERAL MODEL ASSUMPTIONS

The model makes assumptions common to other models in popu-

lation ecology. For instance, we consider survival rates estimated

from mark–recapture as reflecting true survival, but these may be

negatively biased due to the difficulty of discerning between mor-

tality and permanent emigration (Gilroy et al. 2012). Also, we

assume that individuals follow a random walk between patches,

which is common to other modelling approaches that incorporate

movement (e.g. McRae et al. 2008; Fern�andez-Chac�on et al.

2013).

MODEL COMPARISONS

We compared the predicted life expectancy resulting from the

NFIM with that predicted by two other models: one that mini-

mizes dispersal distance, and a bi-objective model that minimizes

dispersal distance and maximizes abundance under the same pro-

tection budget u. To select the set of patches that minimizes dis-

persal distance, we applied the integer program of €Onal & Briers

(2002) (See Appendix S5 for further details). The additional

objective of maximizing abundance in the second model results in

a Pareto optimal frontier (Chankong & Haimes 2008), which

trades off the distances being minimized and the total abundance

being maximized, instead of optimizing a single objective (see

Appendix S5). We compared the prescribed life expectancy of the

NFIM with the solution of the bi-objective model that resulted in

the highest predicted life expectancy in the Pareto optimal

frontier.

CASE STUDIES

We applied the NFIM framework to two mark–recapture data

sets: adult roseate terns S. dougallii living in the north-eastern

United States and adult Everglade snail kites R. sociabilis plum-

beus (Reichert et al. 2012). The roseate tern data set is a small

network (4 nodes and 20 potential transitions) that illustrates the

NFIM in simple terms. The snail kite data set is a larger and

more complex data set (19 nodes and 380 potential transitions)

that allows us to explore a more realistic conservation example.

Patch-specific survival, site fidelity and patch transition probabili-

ties for both species were estimated using variations of the

Arnason–Schwarz multistate model (Nichols & Kendall 1995).

Roseate terns

Roseate Tern colonies were located on Bird Island (BI) in Mar-

ion, Massachusetts, Great Gull Island in New York (GG), Fal-

kner Island in Connecticut (FI) and Cedar Beach (CB) in Long

© 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society, Journal of Applied Ecology, 52, 1588–1597
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Island, New York (Fig. 1). A total of 2043 individual adults were

captured from 1988 to 1990 in these sites using treadle traps and

individually marked with colour bands (Spendelow et al. 1995).

We used the 1988–1990 arithmetic mean of survival, transitions

and colony size estimates.

The parameters that describe how disturbance affects transition

probabilities (aij, bij) were not included in the original article.

Therefore, we randomly generated these parameters once from a

continuous uniform distribution with bounds 0 and 0�3, a range

that represents the magnitude of changes in survival, site fidelity

and movement after disturbance previously reported for similar

species (e.g. B�echet et al. 2003; Calvert & Gauthier 2005), and

qij 2 ½aij þ bij � 1;aij þ bij�. By keeping qij within these bounds,

we ensure that qij ≥ 0.

Everglade snail kites

The Everglade snail kite is a locally and critically endangered spe-

cies in Florida, who depends on wetlands dominated by sparsely

emergent vegetation. We used 17 years of band-resight data

(1997–2013) and a multistate capture–mark–recapture model

(Hestbeck, Nichols & Malecki 1991) to estimate annual transition

probabilities (n = 1180 adults). We included nine lacustrine and

10 palustrine geographical states representing wetland patches

throughout the snail kite’s range. We constrained survival to be

constant because adult survival does not vary considerably

through time (Martin, Kitchens & Hines 2007; Reichert et al.

2012) (see Appendix S6).

Droughts are a strong disturbance in the Everglades that nega-

tively influences food availability resulting in decreased adult

snail kite survival (Mooij et al. 2002; Martin, Kitchens & Hines

2007). In contrast, lacustrine wetlands are more robust to pro-

longed dry conditions and may serve as refugia for snail kites

(Martin, Kitchens & Hines 2007). Based on the results of previ-

ous studies, we expected that disturbance would have significant

negative impacts on the survival probability (16% decline) of

individuals within palustrine wetlands. The probability of surviv-

ing and staying in the same patch or moving decreases by the

same magnitude (recall that all transitions need to sum to unity).

Despite reports of snail kites moving to lakes during drought

conditions (Martin et al. 2006), Martin, Kitchens & Hines (2007)

did not find evidence for drought effects on movement. There-

fore, we did not included a direct effect of drought on movement

and disturbance only influences survival in the patch of origin i.

Scenarios

In the roseate terns network, we started by considering a protec-

tion budget of u = 2 and a disturbance budget of b = 2, while in

the snail kite network u = 4 and b = 5 (i.e. all other patches

unprotected). We also studied the sensitivity of predicted life

expectancy by considering all remaining combinations of protec-

tion and disturbance budgets for both species. In the snail kite

network, disturbance and protection will affect some of the 10

palustrine patches, because disturbance by drought has little

effect on lacustrine wetlands.

To calculate between-patch Euclidean distances in the roseate

tern network, we used the latitude and longitude coordinates

reported for the centroid of the patches (Spendelow et al. 1995).

In the snail kite network, we considered the centroid of the wet-

land patches. Our algorithms were implemented on a Windows 7

Fig. 1. The diagram compares predicted life expectancy when no patch is disturbed, after a worst-case disturbance, after the protection

of the set prescribed by the network fortification -interdiction model (NFIM), after minimizing dispersal distance and after protecting

the set prescribed by the bi-objective model. Note that the disturbance and protection budget (number of patches allowed to be dis-

turbed and protected) were the same for all models (u = b = 2 for roseate terns and b = 5, u = 4 for snail kites). Also note that the bi-

objective model resulted in multiple optimal solutions and this figure shows the solution that resulted in the highest life expectancy.

© 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society, Journal of Applied Ecology, 52, 1588–1597
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64-bit desktop with an Intel Core 2 Quad Q9500 CPU (2�83 GHz)

and 4 GB of RAM. All mathematical programs were solved using

IBM CPLEX optimizer 12.3 (New York, NY, USA).

Results

Protecting the set of patches prescribed by the NFIM

resulted in lower predicted reductions in life expectancies

relative to baseline life expectancy (i.e. no disturbance or

protection) than protecting the set patches that minimized

dispersal distance in both species (Fig. 1). The NFIM pre-

dicted the same life expectancy as the bi-objective model

in the roseate tern network; yet, the NFIM predicted

lower reductions in life expectancy than the bi-objective

model for snail kites. In the roseate terns network, the

worst-case scenario is the disturbance to patches 1 and 2

(Fig. 1b), with a reduction in life expectancy of 37%. The

prescribed protection set by the NFIM also includes

patches 1 and 2 (Fig. 1c) with a resulting reduction in life

expectancy of 5%. This reduction in life expectancy is

smaller than the reduction attained by protecting the

patches that minimize dispersal distance (patches 2 and 3

with a reduction of 24%) and the same as that predicted

by the bi-objective model (Fig. 2a). In the snail kite net-

work, the worst-case scenario is the disturbance to

patches 1, 3, 4, 8 and 19 (Fig. 1g), which resulted in a

reduction in life expectancy of 32%. The prescribed pro-

tection set by the NFIM included patches 1, 3, 4 and 8

with a predicted reduction in life expectancy of 8%

(Fig. 1h). This reduction was lower than the reduction in

life expectancy predicted by minimizing dispersal distance

(patches 2, 3, 5 and 6), which resulted in a 17% reduction

in life expectancy. The NFIM also predicted a lower

decrease in life expectancy than the protection of patches

1, 3, 4 and 19 prescribed to be protected by the bi-objec-

tive model (10% reduction, Fig. 2b). The NFIM for rose-

ate terns and snail kites took 0�28 and 7�04 s to find an

optimal solution, respectively. Each frontier in the bi-

objective model took c. 0�32 s to find an optimal solution.

Not surprisingly, life expectancy increased with increas-

ing protection budget and decreased with increasing dis-

turbance budget (Fig. 3). The sensitivity analysis on u and

b combinations provides insight into how predicted life

expectancy changes with variation in these budgets. For

instance, in the roseate terns network life expectancy

decreased the most by increasing the disturbance budget

from u = 1 to u = 2 (Fig. 3a). Similarly, life expectancy in

snail kites decreased nonlinearly with increasing the num-

ber of patches allowed to be disturbed (Fig. 3b). In both

species, life expectancy increased with increasing protec-

tion budget, but the marginal impact of additional pro-

tected patches decreased as the number of protected

patches increased (Fig. 3). The shape of these curves is

relevant when evaluating protection budgets. Sometimes,

increasing the protection budget by as little as one patch

might result in a significant increase in life expectancy

(e.g. increasing from one to two patches in Fig. 3a).

Discussion

We developed a novel application of NFIM that accounts

for uncertainty in future spatial patterns of disturbance

by selecting an optimal set of sites to protect that will best

mitigate a worst-case disturbance scenario for life expec-

tancy. We showed that the prescribed protection solutions

by the NFIM resulted in higher predicted life expectancies

than protecting the sites that minimize dispersal distance

and better than the bi-objective model at least in the

larger network.

In the roseate tern network, optimal protection sets

were composed of patches with high survival, site fidelity,

immigration and emigration rates to patches with simi-

Fig. 2. The diagram compares life expectancy predicted by the network fortification -interdiction model (NFIM) and Pareto frontier plot

showing predicted life expectancies of the bi-objective model. The bi-objective model minimizes dispersal distance and maximizes abun-

dance for a disturbance budget of b = 2 and u = 2 in the roseate tern network, and b = 5 and u = 4 in the snail kite network. In the bi-

objective model, there is no single optimal solution because there is a trade-off between attaining both objectives (i.e. the optimal solu-

tion can protect higher abundances at the expense of longer dispersal distances). The network fortification -interdiction model (NFIM)

(represented by a triangle) predicted the same life expectancy as the maximum abundance scenario in the roseate tern example, but pre-

dicted higher life expectancy than any of the scenarios of the bi-objective model in the snail kite network.

© 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society, Journal of Applied Ecology, 52, 1588–1597
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larly favourable conditions. Understanding the specific

patch characteristics that drive the inclusion of patches in

the optimal protection set was feasible in this example

because it was a small network (see Appendix S7). In gen-

eral, this patch-level understanding becomes less feasible

as the number of patches increases (as in the snail kite

example) because the model considers the importance of a

particular subset of nodes instead of nodes individually.

The bi-objective model outperformed the strategy of

minimizing dispersal distance, because it incorporated

abundance data. The bi-objective model performed similar

to the NFIM in the roseate tern network because the two

patches selected for protection had abundances orders of

magnitude greater than the other patches. However, the

bi-objective model underperformed in the snail kite net-

work compared to the NFIM. The bi-objective model

selected patch 19 as part of the protection set (instead of

patch 8 selected by the NFIM) because it had the third

highest abundance. However, this patch was also charac-

terized by having low site fidelity and high emigration

rates, which suggests that it might contribute little to life

expectancy. The NFIM accounts for relationships between

patches in the network, and how disturbance affects these

relationships (see Appendix S7). Ultimately, disturbance

and future threats rarely influence biodiversity one patch

at a time (e.g. Seabloom, Dobson & Stoms 2002) and

the NFIM framework better captures that unfortunate

reality.

L IMITATIONS

Given that the NFIM optimizes life expectancy, its limita-

tions are similar to those of population viability analysis,

including a single-species focus and high data require-

ments (Akc�akaya & Sj€ogren-Gulve 2000). Even though

between-patch transition and survival estimates require

much field effort (Calabrese & Fagan 2004), these data

sets are becoming more common in conservation efforts,

mostly due to recent advances in remote animal monitor-

ing technology and large-scale sensor networks (Kool,

Moilanen & Treml 2013). Parameter estimates that

describe how survival, site fidelity and between-patch

movements change when patches are disturbed (i.e. a, b
and q) can also be estimated from the field or taken from

the literature when available (e.g. B�echet et al. 2003), as

in the snail kite example. If these estimates are not avail-

able, then the model can be used as a scenario-planning

tool (Peterson, Cumming & Carpenter 2003).

When conservation goals are at the community or

ecosystem level, the single-species limitation can be ame-

liorated by selecting a limited number of species that are

representative of the ecological processes of interest or are

particularly sensitive to the disturbance of interest (i.e.

indicator species). Alternatively, the combination of

worst-case disturbance protection and approaches that

promote species representation may be useful in assessing

the robustness of a protection solution. If both

approaches prescribe a similar set of patches, then the

solution can be considered robust, potentially yielding a

reserve design that promotes meaningful demographic

processes and species representation (Carroll et al. 2003).

Exact optimization techniques have traditionally been

used in conservation prioritization (Cabeza & Moilanen

2001; Westphal et al. 2003). The advantage of mathemati-

cal programs is that they produce optimal solutions; how-

ever, they might be computationally demanding for larger

networks. Heuristic approaches can be applied to this

problem to produce near-optimal solutions in affordable
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Fig. 3. Predicted life expectancy (z) with increasing protection (u) and disturbance (b) budgets for (a) roseate terns and (b) Everglade

snail kites. Note that in panel (a), life expectancy for budgets b = 3 and b = 4 overlaps for all protection budgets. The black line with

closed symbols represents the disturbance budget that we discuss as an example in this study.
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times, but no method of this type is yet available in the

literature.

EXTENSIONS

The NFIM is a flexible framework that can be applied to

a wide array of problems in conservation and manage-

ment. The model could be formulated to assess vulnera-

bilities in the surrounding matrix by optimizing life

expectancy given the protection or disturbance of links in

the network instead of patches. This modification would

potentially allow the identification of places in the matrix

to perform restoration or build corridors that promote an

increase in life expectancy (McRae et al. 2012).

Our modelling approach inherently assumes that the

cost of protecting each patch will be the same. Variations

in protection costs could easily be incorporated as a con-

straint in the protection model by specifying a monetary

budget instead of a limit on the number of patches to

protect. This incorporation would require the addition of

the following constraint to the protection submodel:

X
i2N

ciwi � u;

where ci is the monetary cost of protecting patch i, wi is a

binary variable that describes if patch i is included in the

protection set, and u is the protection budget. This protec-

tion budget can include the cost of acquiring or managing

a particular set of patches.

Also, our model assumes that a protected patch cannot

be disturbed. Yet, there is the possibility that management

actions might not prevent disturbance entirely, but just

decrease its potential impact. A natural model extension

would thus allow protected patches to be disturbed, but

with a lower impact on transition probabilities than in the

case in which the patch is unprotected.

Even though the parameterization of the model we

described optimizes life expectancy, alternative objective

functions can be applied. For instance, minimizing biodi-

versity loss or loss of the proportion of area occupied

after a worst-case disturbance could be an alternative

objective. An application of such an approach found sig-

nificant predicted reductions in biodiversity loss when

protecting against a worst-case disturbance scenario com-

pared to simply maximizing species representation

(O’Hanley, Church & Gilless 2007a). This result suggests

that interdiction models might be well suited for conserva-

tion planning due to their generality and robustness.

UNCERTAINTY AND WORST-CASE DISTURBANCE

PROTECTION

Uncertainty is rarely incorporated into conservation plan-

ning (Pressey et al. 2007), yet information-gap approaches

are gaining popularity to address uncertainty in model

structure and parameters (Regan, Colyvan & Burgman

2002; Moilanen et al. 2006a). Information-gap approaches

often favour the selection of patches that minimize disper-

sal distance when faced with high uncertainty on how

future spatial patterns of disturbance will affect the dis-

persal behaviour of a species because there is more cer-

tainty about short-distance movements than long ones

(Halpern et al. 2006).

The usefulness of minimizing dispersal distance as a

conservation objective has been debated. Some studies

argue for promoting movement by minimizing either the

perimeter length of the network or the distance between

patches. Minimizing these metrics allows individuals to

respond to disturbance by moving to higher-quality sites

(Gillson et al. 2013). Other studies show that minimizing

dispersal distance may not necessarily promote persis-

tence, because protecting patches that are closer together

may leave higher-quality, but isolated, patches unpro-

tected (Hodgson et al. 2011). Our results provide support

for the latter. Life expectancy was higher in the prescribed

optimal solution from the NFIM than minimizing disper-

sal distance. This application of network fortification -

interdiction may be an appropriate way to resolve this

debate because it follows a precautionary approach, but

also optimizes life expectancy, which combines informa-

tion on movement with demographically relevant mea-

sures such as site fidelity and survival (Ellis, V�aclav�ık &

Meentemeyer 2010). Site prioritization for conservation

should consider network fortification approaches, as their

prescribed protection solutions result in higher predicted

long-term persistence than minimizing dispersal distance

or maximizing abundance.
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Appendix S7. Patch-specific characteristics.

© 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society, Journal of Applied Ecology, 52, 1588–1597

Conservation of worst-case disturbance 1597

 13652664, 2015, 6, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2664.12532 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [17/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


