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a  b  s  t  r  a  c  t

Land-use  and  land-cover  change  (LUCC)  has  broad  implications  for  biodiversity,  climate  and  ecosystem
services.  Even  though  LUCC  often  focuses  on  forest  fragmentation,  forest  recovery  is  another  form  of  LUCC
that is becoming  increasingly  common.  Understanding  the  process  of forest  recovery  is a  conservation  and
management  priority;  however,  it  is a difficult  process  to understand  given  the  large  number  of  factors
that  interact  in  a complex  spatio-temporal  setting.  Reaction  diffusion  models  provide  an  appropriate
framework  to  study  the complex  dynamics  of  forest  recovery  because  they account  for both  spatial
structure  and  the  dynamics  of land-cover  classes.  Here,  we  describe  a diffusive  logistic  growth  (DLG)
model  to  quantify  forest  recovery.  We  define  a  system  in  which  forest  diffuses  through  a non-forest
matrix.  The  model  consists  of  a diffusion  term  that  describes  the  spread  of  forest  in continuous  space  and
time,  and a  logistic  growth  reaction  that  describes  change  in  the  proportion  of forest.  To  illustrate  model
parameterization,  we  used  the  DLG  approach  to  describe  forest  recovery  in Puerto  Rico  from  1951  to
1991–1992.  The  model  showed  that  forest  recovery  in Puerto  Rico  was  explained  by a  positive  intrinsic
growth  rate of  forest  and  relatively  slow  diffusion.  This  mechanistic  modeling  approach  presents  a  novel
way to study  forest  recovery  in  continuous  space  and  time  while  accounting  for  spatial  dependency.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Land-use and land-cover change (LUCC) have been identified as
some of the most important human alterations on Earth (Turner
et al., 1990; Vitousek, 1994; Lambin et al., 1999; Houet et al., 2010),
directly affecting biodiversity (Sala et al., 2000) and climate (Chase
et al., 1999; Houghton et al., 1999). Even though LUCC describes
general land-cover transitions, most studies focus on the process
of large-scale deforestation for human uses, such as agriculture
(Lambin et al., 2001). While agricultural intensification is ongoing,
especially in the tropics (Skole and Tucker, 1993; Sodhi et al., 2004),
forest recovery is becoming increasingly common (Brown, 2003;
Aide and Grau, 2004). Current tendencies in the global economy
promote intensive agriculture and rural–urban migration, which
have resulted in the abandonment of marginal agricultural areas
leading to forest recovery (Grau et al., 2003; Brown, 2003).

Forest recovery is a multi-scale process that, at smaller tempo-
ral and spatial scales, is dominated by factors such as soil fertility,
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propagule availability, and tree colonization (Uhl et al., 1988; Aide
and Cavalier, 1994). At larger scales forest recovery involves the
spreading of forest from remnants to non-forested sites (Chazdon,
2003). We  envision the spatial pattern of small-scale tree coloniza-
tion as highly irregular and summarized effectively by a stochastic
process while at large spatial scales the observed spatial pattern is a
smooth increase in secondary forest cover. This multi-scale process
resembles diffusion in many ways.

Okubo (1980) defines diffusion as the process by which a group
of particles (which may  be molecules or living individuals) spread in
space and time through individual random motion. Diffusion mod-
els have been used in many fields, such as chemistry, physics and
ecology. When applied to living organisms, the general idea is that
individuals disperse via random walks such that at large spatial
scales the collection of dispersing individuals will behave as parti-
cles diffusing under Brownian motion (Cantrell and Cosner, 2003).
Furthermore, diffusion models have been proposed as a way to link
individual movement and spatial population dynamics (Skalski and
Gilliam, 2003). Diffusion models have been successfully applied to
describe land-cover change due to their ability to describe ran-
dom processes at small scales that produce smoother patterns at
larger scales. When a reaction term is incorporated, these diffusion
models become particularly appropriate to model LUCC because
they account for both spatial structure and the dynamics of land-
cover classes (Jesse, 1999; Svirezhev, 2000). Nonetheless, reaction
diffusion models have not been applied to quantify forest recovery.

0304-3800/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
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Here we describe a diffusive logistic growth (DLG) system to
model forest recovery as the spread of land-cover classes (e.g.,
forest or non-forest) in continuous space and time. This model-
ing approach allows the study of the spatio-temporal dynamics of
forest recovery while accounting for spatial dependency. We illus-
trate the DLG modeling approach by applying it to the spatial and
temporal dynamics of forest recovery in the island of Puerto Rico
from 1951 to 1991–1992. We  also discuss potential extensions of
such models and their benefits and limitations compared to other
approaches for modeling LUCC.

2. Methods

2.1. Model description

The diffusive logistic growth (DLG) model is a two dimensional
extension of Fisher’s equation. The DLG has two components: logis-
tic population growth and Brownian random dispersal (Fisher,
1937; Holmes et al., 1994). This model is represented by a par-
tial differential equation that describes the dynamics and spread of
forest (u) through a non-forest matrix:

∂u

∂t
= Du

�
∂2

u

∂x2
+ ∂2

u

∂y2

�
+ ruu

�
1 − u

Ku

�
(1)

where u represents the proportion of forest, t is time, Du is the diffu-
sion coefficient, x and y represent spatial locations, ru the intrinsic
growth rate, and Ku is the carrying capacity. Since we  are consider-
ing a system of only two land-cover classes (forest and non-forest),
the proportion of non-forest is given by v = Ku − u.

To complete the model, boundary conditions and initial values
must be specified. Initial values are given by the proportion of forest
in the domain R = {(x, y)|0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly} at time t = 0, which is
given by the input matrix (see below). Here, Lx and Ly represent the
extent of the landscape in the x and y axes.

We chose the boundary conditions on the rectangular domain
R as a solid wall, i.e., when the diffused land-cover class gets to
the boundary it will stop abruptly. This condition is known as a
Dirichlet boundary condition, which defines the values of u at the
boundaries by setting u = 0 on the boundary of R, ∂R:

∂R =






(0,  y), 0 ≤ y ≤ Ly

(Lx, y), 0 ≤ y ≤ Ly

(x, 0),  0 ≤ x ≤ Lx

(x, Ly), 0 ≤ x ≤ Lx.

(2)

2.2. Parameter interpretation

The current application of the model includes three parameters:
the diffusion coefficient (Du), the intrinsic growth rate (ru), and car-
rying capacity (Ku). In a land-cover change context, the intrinsic
growth rate describes the rate of change in the proportion of the
land-cover category u. This proportion of land-cover class u can
increase up to a maximum which is the carrying capacity (Ku = 1).
The diffusion coefficient describes the rate of spread of the change
in the proportion of land-cover u.

2.3. Iterative method to solve the model equations

To solve Eq. (1),  we used the Crank–Nicolson method (Crank and
Nicolson, 1947). This method substitutes the time derivatives in Eq.
(1) by the following approximation

∂u

∂t
≈ u(x, y, t + ıt) − u(x, y, t)

ıt
(3)

and the spatial derivatives by the following approximation

∂2
u

∂x2
≈ u(x + ıx, y, t) − 2u(x, y, t) + u(x − ıx, y, t)

(ıx)2 , (4)

where ıt and ıx are the time step and the grid cell width in
the x direction, respectively. The method takes the mean of the
spatial derivative approximations in two  consecutive times. The
Crank–Nicolson method applied to Eq. (1) yields the following
divide difference equation
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where Uk
ij represents the discrete approximations of u(xi, yj, tk), and

(xi, yj) is a grid point at the time step tk.
Starting with the input matrix values for U0

ij , we find approxi-
mations for the next time step by solving the system (5) iteratively
until a convergence criterion is satisfied for each grid cell (xi, yj) by
using the Jacobi’s method (Press et al., 2007). Then we repeat this
procedure in the subsequent time steps.

2.4. General model assumptions

The application of the DLG model to forest recovery assumes
that land-cover change can be described as traveling waves that
spread outward from source patches at a constant rate (Okubo,
1980; Holmes et al., 1994). We  assume that tree colonization, which
can be viewed as the process of forest recovery at smaller scales,
spreads irregularly in space.

Our application of the DLG approach describes the dynamics of
two land-cover classes, forest (u) and non-forest (v), such that it is
a zero-sum process in which by modeling the dynamics of forest
we may  obtain both the projected matrix of forest and non-forest
because v = Ku − u. Hence, the land-cover class “non-forest” will
change at the same rates as “forest” but in the opposite direction.

The DLG model, as described in Eq. (1),  also assumes that all
parameters are constant in space and time. However, this assump-
tion can be relaxed, such that spatial and temporal variation in
parameters can be incorporated when needed (Section 4.3).

2.5. Case study

We  selected the island of Puerto Rico as a case study to illus-
trate the application of the DLG modeling approach because it
underwent a dramatic increase in forest cover of ∼30% in 40 years.
The dramatic increase in forest cover was the result of post World
War  II socioeconomic changes that incentivized a shift from agri-
cultural activities to the manufacture industry. These practices
caused population migration from rural areas to urban centers,
which led to the eventual abandonment of agricultural fields (Dietz,
1986). For instance, herbaceous agriculture (mostly sugarcane)
decreased from 199,717 ha (22.9%) in 1951 to 29,377 ha (3.4%)
in 1991, and coffee and other woody agriculture showed similar
declines (Kennaway and Helmer, 2007). This decrease in agriculture
led to an increase in forest cover by secondary forest expansion and
an increase in urban settlements. Forest increased from 154,585 ha
(17.8%) in 1951 to 377,563 ha (43.3%) in 1991 and urban cover
increased from 14,991 ha (1.7%) to 124,812 ha (14.3%).
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Fig. 1. (A) Binary (forest/non-forest) land-cover map  of Puerto Rico in 1951 showing the drawn rectangle used to calculate the percentage cover of forest. (B) It also shows the
33  × 139 matrix for the proportion of forest in 1951 used as input in the model to simulate the landscape in 1991–1992. The darker the color in (B), the higher the proportion
of  forest in the pixel. The proportion of forest fluctuates between 0 and 1 with a u = 0.48.

2.5.1. Land-cover data
We  used two published digital land-cover maps of Puerto Rico

for 1951 and 1991–1992 to estimate land-cover change (Kennaway
and Helmer, 2007). The 1951 land-cover map  was  developed by the
vectorization of a 1:150,000-scale paper map  that was originally
constructed from the manual analysis of 1:20,000-scale black and
white aerial photos from 1951 (Kennaway and Helmer, 2007). Map
data was co-registered to the Landsat mosaic of Puerto Rico from
the year 2000 with a pixel size of 30 m.  The 1991–1992 map  was
constructed through supervised classification of Landsat TM (pixel
size 30 m)  mosaic for the years 1991–1992. Field surveys and expert
consultation were also performed to confirm this classification. For
more details about the digital maps used see Helmer et al. (2002)
and Kennaway and Helmer (2007).  Even though we  can expect land
cover classification incompatibilities between these maps, these
potential incompatibilities were substantially reduced by subse-
quent reclassification into the two land-cover classes, forest and
non-forest.

2.5.2. Data preparation
To parameterize the DLG model, we reclassified the 1951 and

1991–1992 maps. All forested land-cover types (e.g., submontane,
lowland and dry forests) were categorized as “forest” while all the
non-forested land-cover types (e.g., urban, pasture, agriculture, and
quarries) were categorized as “non-forest”. In the 1951 map  mili-
tary reserves were classified as “forest” because they included large
areas of undisturbed forests (Kennaway and Helmer, 2007). This
reclassification process resulted in a binary map  with two cate-
gories (forest and non-forest) for 1951 (Fig. 1A) and for 1991–1992.

The perimeter of the island of Puerto Rico is highly irregular
which makes it computationally demanding and logistically com-
plex to define proper boundary conditions for a diffusion model.
Thus, we used the largest rectangle that could be overlaid inside
the island map  without including coastal water as a boundary.
This rectangle was then subdivided into 33 × 139 1-km grid cells.
For each cell, we calculated the percent cover of each land-cover
class (forest and non-forest). Thus, the input for the DLG model is a
33 × 139 matrix; in which each element represents the proportion
of forest (Fig. 1B).

2.5.3. Parametrization
For modeling, we  set t = 40 years based on the time interval

between maps. The diffusion coefficient (Du) and the intrin-
sic growth rate (ru) were calculated in an optimization routine
described below (see Section 2.5.4). The carrying capacity of the
system was  assumed equal to the maximum proportion possible in
each grid cell (Ku = 1).

2.5.4. Model calibrartion
We  calculated the parameters ru and Du by an optimization

routine in which we  iteratively tested all combinations of the
parameters and chose the one that maximized the agreement
between the model output and the reference map of Puerto Rico
in 1991–1992.

Half of the study area (east half) was used for parameter esti-
mation (training set) while the other half (west half) was  used for
model validation (testing set). In the optimization procedure, we
solved the model equation (1) by means of the numerical method
described in Section 2.3,  using the east portion of the forest con-
centration matrix in 1951 as input. This step was repeated for
all combinations of ru (0.001–0.900 in 0.01 increments), and Du
(10−6 to 10−4 in 10−6 increments). The output for each run was a
projected concentration matrix for forest for 1991–1992 for each
combination of parameter values. We  chose the parameter combi-
nation (Du, ru) that minimized the root mean square error (RMSE)
between the model output using the training data and the reference
map  of Puerto Rico in 1991–1992. The ability of RMSE to express
the error in the same units as the data and its ability to compare
continuous values makes this measure appropriate to validate our
model (Pontius et al., 2008) (Fig. 2). We  assessed the sensitivity of
the parameters by plotting ru, Du and RMSE scores across all param-
eter space (see Appendix A in the online supplement), to assess the
change in RMSE with changes in parameters of the DLG model.

2.5.5. Model validation
We  compared the accuracy of the DLG and a null model in

predicting forest cover in Puerto Rico in 1991–1992. Spatial pat-
terns may  arise as consequence of various underlying mechanisms
including simple stochasticity. A null model generates a pattern
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Fig. 2. Flow chart of the modeling process. The process starts with the optimization of parameters Du and ru and finishes with a comparison of the predicted forest map  of
Puerto  Rico in 1991–1992 with the observed map  and a null model.

based on random sampling from a distribution. The purpose of this
randomization is to generate a pattern that would be expected in
the absence of ecological mechanism of interest (Gotelli and Graves,
1996). In our case, a comparison with a null model allow us to assess
if the DLG has a better accuracy than a random model that does
not incorporate spatial dependency or change in the proportion of
forest.

We  developed a null model that predicted forest cover in each
cell independently by drawing from a normal distribution with a
mean equal to the mean forest proportion in the east half of the
landscape in 1991–1992 (used in model parameterization of the
DLG model) and a large standard deviation to create an approxi-
mating flat distribution (see Appendix B in the online supplement).
We used a logit transformation to bound the distribution to the 0–1
interval such that,

logit(mi) = logit(u) + " (6)

where mi is the value for cell i, u is the mean proportion of forest in
the east side of the observed landscape and " ∼ N(0, 1.6). We  made
n = 1000 realizations of this procedure to calculate a distribution
of RMSE scores for the null model (see Appendix B in the online
supplement).

To validate the DLG model, we solved the model equation (1)
with the method in Section 2.3,  using the west half of the landscape
in 1951 as input and the optimal values of ru, and Du calculated

in Section 2.5.4. We  calculated the RMSE between the DLG model
output and the west half of the landscape in 1991–1992.

3. Results

The optimization procedure estimated a growth rate for for-
est of ru = 0.065 (1/yr) and a diffusivity of Du = 9.5 × 10−3 km2/yr.
The model was  relatively less sensitive to the diffusion than to the
growth rate; the multivariate parameter space for ru and Du shows
a greater average local change in the slope of ru (see Appendix A in
the online supplement).

The DLG model was moderately accurate at predicting changes
in forest cover in Puerto Rico in 1991–1992 (Fig. 3); and the DLG
was more accurate than the null model. The root mean square
error (RMSE) between the model and the observed map  of Puerto
Rico was 0.27 while the average RMSE between the observed map
and the null model was  0.39 ± 0.01 (see Appendix B in the online
supplement). The DLG model tended to under predict forest per-
cent cover at low forest densities and over predict forest densities
at higher forest densities (Fig. 4).

4. Discussion

We  demonstrate a novel application of a diffusive logis-
tic growth (DLG) model that describes the pattern of forest
recovery as the result of the spreading of land-cover classes in
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Fig. 3. Surface plots showing how concentration matrices compare between (A) the
model output and (B) the reference map  of Puerto Rico in 1991–1992.

continuous space and time. Below we discuss three key elements
of this approach: parameterization, validation, and extending this
modeling approach for other applications of LUCC.

4.1. Parametrization

We found that forest recovery in Puerto Rico was  explained
by a positive growth rate of forest and a relatively slow diffu-
sion. Estimates of these parameters for land-cover change models
are scarce in the literature, which makes comparing our estimates
with others difficult. Even though reaction-diffusion models have
been commonly used in theoretical ecology to describe continu-
ous processes in space and time (Holmes et al., 1994; Cantrell and
Cosner, 2003), most empirical applications focus on animal move-
ment in heterogeneous landscapes, the spread of invasive species

Fig. 4. Calibration plot showing the distribution of prediction errors.

and species interactions (e.g., Reeves and Usher, 1989; Neubert
and Parker, 2004; Ovaskainen, 2004; Reeve et al., 2008). In these
applications, parameters (e.g., population growth rates or diffu-
sion coefficients) can be derived from experimental data on tracked
individuals. In contrast, in land-cover change studies, land-cover
transitions (e.g., percentage increase or decrease of particular class
in a time period) are the most common measure reported, but
these transition estimates do not discern between spread (i.e.,
diffusion) and growth rates (e.g., Kennaway and Helmer, 2007).
Nevertheless, time-series land-cover data can be used to make this
distinction.

The procedure that we used to estimate the diffusion and growth
rates using the Puerto Rico land-cover time-series (Section 2.5.4)
was a computationally slow process. It was the method of choice
because it is a simple method to implement and guarantees a solu-
tion (or multiple solutions if that is the case). In more complex
applications, we recommend using a more efficient optimization
procedure such as the Nelder–Mead method (Nelder and Mead,
1965), which minimizes an objective function in multidimensional
space.

4.2. Model validation

Our main purpose of applying the DLG approach to land-cover
change in Puerto Rico was  to illustrate a simple parameterization
of the model. The DLG model resulted in better accuracy than
the null model which suggests that the way the DLG describes
the dynamics and the spatial spread of the land-cover classes
predicted better forest recovery than a simple random model.
Both the DLG and null model outputs had the same average for-
est proportion. Therefore, the increased accuracy of the DLG is
due to its ability to better describe the spatial context of forest
recovery.

We have identified potential sources of error that may account
for discrepancies between the model and the reference map. For
instance, to simplify the parameterization, we re-classified the
original land-cover classes into classes “forest” and “non-forest”.
This simplification required a general re-classification of land-cover
classes “pastures” and “urban” into the same category “non-forest”,
which may  have introduced error in the parameterization process.
Forest recovery occurs when pastures, agricultural sites or other
early successional stages are converted to secondary forest (Aide
et al., 1995). In contrast, urban sites are rarely converted to sec-
ondary forests. Urban sites are an important component of this
system because they increased from 14,991 ha (1.7%) in 1951 to
124,812 ha (14.3%) in 1991–1992 (Kennaway and Helmer, 2007).
Even though urban sites are mostly located around large cities,
small urban spots are widespread through the island of Puerto Rico
(Martinuzzi et al., 2007), which may  account for the observed rough
pattern in the reference map  of 1991–1992 that is not accounted
in the model. With some modifications, the DLG model could be
extended to incorporate three categories such as “forest”, “urban”
and “other” land covers. In such cases, the urban land cover will
behave differently than the other two  because it cannot be con-
verted into any other land-cover category.

Even though modeling three or more land-cover classes may
increase the predictive accuracy of the model, it also increases
its complexity. Given the zero-sum characteristic of the system,
modeling two  land-cover classes has the practical feature that by
modeling one land-cover class, the proportion of the other can
be easily calculated (e.g., v = Ku − u), requiring a single equation
with three parameters (Ku, ru and Du). Modeling three land-
cover classes, on the other hand, increases the complexity of the
model requiring at least two partial-differential equations with six
parameters.



Author's personal copy

18 M.A. Acevedo et al. / Ecological Modelling 244 (2012) 13– 19

4.3. Extending the DLG model

Even though the general model presented in Eq. (1) assumes
homogeneity of parameters in space and time, steep slopes and
high mountains are more likely to undergo forest recovery than
coastal sites because they have poor soils or are difficult to develop
(Thomlinson et al., 1996; Chinea, 2002; Helmer, 2004). Making the
intrinsic growth rate and diffusion coefficients functions of spatial
covariates such as slope, elevation, and distance to nearest road
could potentially improve model accuracy in some applications.

The DLG framework can also be extended to account for other
population dynamics that do not necessarily follow logistic growth.
For instance, the logistic growth reaction term may  be replaced by a
Lotka–Volterra competition term. In such cases, land-cover classes
would compete for space, rather than exhibiting simple logistic
growth (as was modeled here). Lotka–Volterra models have been
already developed theoretically in a spatial setting (Hastings, 1978;
Jorné, 1977; McLaughlin and Roughgarden, 1991; Raychaudhuri
et al., 1996; Jesse, 1999; Svirezhev, 2000), but its application to
model forest recovery remains unexplored.

In the present application, we considered forest recovery in a
single time interval of 40 years (1951 to 1991–1992). Yet, the DLG
approach may  be useful to study changes in the rate of change and
the rate of spread of land-cover classes through time. This mod-
ification would require a sequence of land-cover maps spanning
more than two time intervals for model validation. We  expect that
model accuracy will improve by considering smaller time intervals
because multiple rates of change and diffusion coefficients in time
may  capture better the heterogeneity in these processes.

4.4. Land-cover change modeling through reaction-diffusion
equations

Models are frequently used to describe and predict LUCC due to
their ability to capture a complex process with just a few important
variables and relationships. Common modeling approaches include
correlative models such as statistical models and mechanistic mod-
els such as cellular automata. Statistical models are often employed
to predict future scenarios, while cellular automata are often used
to gain insight on the underlying mechanisms and spatial processes
behind LUCC (for comprehensive reviews see Agarwal et al., 2002;
Parker et al., 2003). Statistical models are the most commonly used
due to their simplicity and potential for real world applications
(e.g., Helmer, 2004; Crk et al., 2009). However, these models may
provide little insight about the spatially dependent dynamics of
LUCC because most describe land-cover transitions in a discrete
setting treating each pixel as an independent sampling unit. On the
other hand, spatial dependency is commonly included in cellular
automata models by incorporating neighborhood rules (e.g., Clarke
and Hoppen, 1997; Soares-Filho et al., 2002). Yet, these models typ-
ically include many parameters and decision rules, most of which
are difficult to empirically evaluate for their validity. By assuming
that a diffusive process can describe forest recovery, the DLG pro-
vides an alternative mechanistic approach that incorporates spatial
dependency in continuous space and time with a reduced number
of parameters. In addition, the reaction-diffusion nature of the DLG
allows the incorporation of changes in the proportion of forest and
the rate of spread forest as two independent processes in the model.

Reaction-diffusion equations have been useful to describe
other land-cover change processes. For instance, van de Koppel
et al. (2002) studied potential mechanisms behind vegetation
collapses at broad spatial scales by describing a reaction-diffusion
system in two dimensions. Similarly, Jesse (1999) used a diffu-
sive Lotka–Volterra system to study potential vegetation shifts
between tundra and forest in North America under varied climate
change scenarios. Our study builds upon these previous studies

by providing an application and test of a simple reaction diffusion
system to describe forest recovery, which currently is becoming a
common land-cover change process.

Great advances have been made in detecting and identifying
LUCC as well as understanding its driving forces (Houet et al., 2010).
However, there is still much to learn about the multi-scale ecologi-
cal mechanisms behind LUCC and forest recovery, specifically. The
model presented here provides an alternative approach to under-
stand and study forest recovery in a continuous spatial-temporal
setting.
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