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We compared the ability of three machine learning algorithms (linear discriminant analysis, decision tree,
and support vector machines) to automate the classification of calls of nine frogs and three bird species. In
addition, we tested two ways of characterizing each call to train/test the system. Calls were characterized
with four standard call variables (minimum and maximum frequencies, call duration and maximum power)
or eleven variables that included three standard call variables (minimum and maximum frequencies, call
duration) and a coarse representation of call structure (frequency of maximum power in eight segments of
the call). A total of 10,061 isolated calls were used to train/test the system. The average true positive rates for
the three methods were: 94.95% for support vector machine (0.94% average false positive rate), 89.20% for
decision tree (1.25% average false positive rate) and 71.45% for linear discriminant analysis (1.98% average
false positive rate). There was no statistical difference in classification accuracy based on 4 or 11 call
variables, but this efficient data reduction technique in conjunction with the high classification accuracy of
the SVM is a promising combination for automated species identification by sound. By combining automated
digital recording systems with our automated classification technique, we can greatly increase the temporal
and spatial coverage of biodiversity data collection.

© 2009 Published by Elsevier B.V.

1. Background

Our understanding of ecological systems is inadequate because our
knowledge is based on very limited spatial and temporal scales (Levin,
1992; Condit, 1995; Porter et al., 2005). New advances in satellite
imaging and sensor networks have provided invaluable tools for col-
lecting land-cover and abiotic data over larger scales; however,
collecting biodiversity data, especially for fauna is still limited due to
the need for species identification by humans. Recent developments
in computer science for pattern recognition and classification are
providing new tools to meet this challenge.

Most classificationmethods used for the automated identification of
species classify samples based on morphological characteristics (Gauld
et al., 2000) or bioacoustic signals (Brandes et al., 2006; Nickerson et al.,
2006; Fagerlund, 2007). Classification of samples based on morpholo-
gical characteristics requires the collectionof theorganismorportions of
the organism (such as wings, pollen or genitalia) which requires
intensive field sampling. However, sound can be collected easily in the

field through automated digital recorders, which can collect data con-
tinuously and have the ability to detect more species than traditional
scientific surveys (Acevedo and Villanueva-Rivera, 2006). Furthermore,
these recordings can be analyzed with classification methods to auto-
mate species identification.

The two most important tasks in the process of automated species
identificationwith sound are signal detection and signal characteriza-
tion (Rickwood and Taylor, 2008). Signal detection refers to the ex-
traction of vocalizations of interest from the noisy environment of a
continuous recording. Signal characterization refers to the classifica-
tion of these extracted vocalizations into species. Signal detection has
been well studied for human speech recognition; however, even
though multiple classification methods have been applied for signal
characterization, few studies have compared the precision and accu-
racy of these methods (Skowronski and Harris, 2006).

Many studies argue that supervised machine learning algorithms
such as linear discriminant analysis (Simmonds et al., 1996; Parsons
and Jones, 2000), decision trees (Herr et al., 1997), Artificial Neural
Networks (ANN) (Balfoort et al., 1992; Boddy et al., 1994; Do et al.,
1999; Chesmore et al., 2001), Hidden Markov Chains (Kogan and
Margoliash, 1998) and support vector machines (SVMs) (Fagerlund,
2007) are the best choice for automated species identification because
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of their high accuracy (N90% accuracy) when compared to human
classification. The major disadvantage of these algorithms is that they
require large numbers of samples (hundreds to thousands) to train
the system to obtain this high accuracy. Moreover, the training stage of
most of these supervised ML algorithms is computationally demand-
ing due to the large amount of data used as input. Thus, there is a need
for new ways to reduce the amount of data used for training without
compromising precision or accuracy.

The objectives of this study are (1) to compare three machine
learning algorithms (linear discriminant analysis, decision tree and
support vector machine) in the automated classification of bird and
amphibian calls and (2) to compare two methods of training data re-
duction, one that characterizes each call with four standard variables
(minimum and maximum frequencies, call duration and maximum
power) and another that included 11 call variables (minimum fre-
quency, maximum frequency, call duration and the frequency of
maximum power in eight segments of the call). To make these com-
parisons we used 2132 recordings from Puerto Rico that include nine
species of Eleutherodactylus frogs and three birds.

2. Study sites

Recordings were collected from 14 montane sites in Puerto Rico
(Fig. 1). One site was located in the Guajataca State Forest and two
sites in the Maricao State Forest. Three other sites were located in the
Toro Negro State Forest, two sites were located in the Carite State
Forest and six sites in El Yunque National Forest.

3. Methods

3.1. Sound recordings

Recordings were made using an automated digital recording sys-
tem (ADRS) (Acevedo and Villanueva-Rivera, 2006). This recording
system was composed of a Nomad Jukebox 3 digital mp3 player and
recorder (DAP-HD0003, Creative Labs, California) which recorded 16-
bit wav files at a sampling rate of 48 kHz (Villanueva-Rivera, 2007).
We used a Sony ECM-MS907 electret condenser microphone with a
directed angle of 120°. To improve sound quality the microphone was
connected to a preamplifier (SP-PREAMP, The Sound Professionals,
Inc., New Jersey). The microphonewas placed ~1 m above the ground.
At each site the automated recorder collected 1 min of sound every
30 min for five consecutive days.

The recording dataset included samples of 12 species (9 frogs and 3
birds). These include most of the extant Eleutherodactylus frog com-
munity in Puerto Rico'smountains (E. coqui, E. portoricensis, E. antillensis,
E. hedricki, E. wightmanae, E. unicolor, E. richmondi, E. locustus and
E. gryllus) and three common mountain bird species (Patagioenas
squamosa, Loxigilla portoricensis and Coereba flaveola). These 12 species
vary greatly in frequency bandwidth, call duration and call structure
which makes it an appropriate dataset to test classification accuracy of
machine learning methods in complex acoustical communities (Fig. 2).
Moreover, E. coqui and E. portoricensis are species with very similar call
characteristics which provide a true classification challenge (Fig. 3).

3.2. Data collection and verification

A total of 2,132 one minute recordings were made using ADRS
(Fig. 1). These recordings were analyzed twice, first by one of us (L. J.
Villanueva-Rivera) to identify all the frogs present. Then, a group of
trained students listened to the recordings, identified the species of
frogs and birds present, and isolated three sample calls of each species,
using the box tool of Raven Pro 1.2.1. FFT transformations were
constructed using a Hann window with 512 samples. In each isolated
call we calculated minimum frequency, maximum frequency, maxi-
mum power and call duration. These measures were chosen because

they show little overlap between species (Fig. 2). In addition, we
divided each call into eight segments in which we calculated the
frequency of the maximum power in each segment (Fig. 4).

We compared the species list made by both observers and in case
of a mismatch, a third person (M. Acevedo) listened to the recording
and determined the correct species list. In addition, we created corre-
lation plots between variables (e.g. minimum frequency vs. maximum
frequency) to study outliers. These outliers were potential errors that
may have been missed by the species list comparisons, thus we ver-
ified that they were correctly classified and/or that the box was cor-
rectly drawn. Once we were certain that the data set was clean, we
used the variables calculated for each call to train/test the three
machine learning algorithms (Fig. 1).

3.3. Signal Representation

We represented each call as a pair 〈x,c〉, where x2ℝn is a real-valued
vector of length 4 or 11 depending on the training data reduction
method used to describe each call. We refer to this vector as a feature
vector. Element c2C is an indicator of the species to which the signal
belongs (Eleutherodactylus coqui, E. portoricensis, E. antillensis, E. hedricki,
E. wightmanae, E. unicolor, E. richmondi, E. gryllus, E. locustus, Patagioenas
squamosa, Loxigilla portoricensis or Coereba flaveola).

A total of 10,061 sample calls were used to train/test the system.
Given that Eleutherodactylus coqui is the most abundant frog in the
mountains of Puerto Rico, it was also the most common species in the
recordings with the highest number of samples (N=4641) followed
by E. unicolor (N=1052), E. portoricensis (N=857), E. wightmanae
(N=769), E. richmondi (N=663), E. hedricki (N=320), E. gryllus
(N=254), E. antillensis (N=196) and E. locustus (N=128). Coereba
flaveolawas themost common bird (N=730) followed by Patagioenas
squamosa (N=260) and Loxigilla portoricensis (N=191).

3.4. Signal classification

The combination of variables that characterize each of the 10,061
analyzed calls composed a set of independent and identically dis-
tributed training instances {〈x1,c1〉,…,〈xl,cl〉} used to estimate a set of
decision functions fc, such that, given a new feature vector xnew
classifies the call to the species defined by ĉ =arg maxc2C fc(xnew).
This is the usual mathematical formulation of the supervised clas-
sification setting. The challenge in this setting is avoiding over-fitting
the estimated decision functions fc to the training instances. When the
decision functions are over-fitted they classify the training instances
almost perfectly but fail to classify new calls correctly. The main
strategy to avoid over-fitting is to limit the complexity of the
estimated decision functions. For example, by assuming that decision
functions belong only to very restricted types, say linear in feature
vectors x, or by allowing richer types of functions, but optimizing
some trade-off of complexity and accuracy on the training instances.
See Hastie et al. (2001) for more details on the over-fitting problem in
the methods compared in this study.

In this paper we report the results for three classification algo-
rithms: 1) linear discriminant analysis (LDA) which restricts functions
fc to be linear in feature vector x and assumes a probabilistic model for
each class (Fig. 5a); 2) decision trees which recursively partition ℝn

into axis-parallel hyper-rectangles and assigns a class to each partition
(Fig. 5b). In this case, arg maxc2C fc(x) is given implicitly by the class
assigned to the hyper-rectangle containing x. The complexity of the
decision tree is given by the number of partitions and the recursion
depth required to define them. This is controlled by “pruning” the tree,
usually a post-processing step done after an initial tree is created
from the training instances. 3) Support vector machines (SVMs)
functions are allowed to be nonlinear in the feature vectors x and a
trade-off between complexity and accuracy is directly optimized
(Fig. 5c).
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3.4.1. Linear discriminant analysis
Linear discriminant analysis (LDA) assumes that feature vectors

x2ℝn belonging to each class c2C follow a multivariate Gaussian dis-

tributionN(µc,∑c). Furthermore, it assumes that the covariance matrices
of all classes are equal, i.e. ∑c=∑ for all c2C. Decision function fc(x)
is the log-likelihood of x, i.e., log Pr(x; µc,∑)∝ xT∑−1µc−1

2
µcT∑−1µc+

Fig. 1. Flow of information from automated field recordings to automated call classification. Automated digital recording systems (ADRS) were place in 14 field sites in the island of
Puerto Rico. These recordings were digitally stored and later manually classified. This manual classification was later verified for human errors. Once the data set was cleaned we
performed feature vector extraction describing each call as a pair 〈x,c〉, where xaℝ4 or xaℝ11. We did ten-fold cross-validation (using 90% of the data to train and 10% to test) to
compare three machine learning methods (linear discriminant analysis; LDA, decision tree; DT and support vector machine; SVM). We compared the accuracy of each method and
each data reduction technique.
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log πc, where πc is a probability distribution over classes c2C. Therefore,
arg maxc2C fc(x) is the class that maximizes the probability of feature
vector x.

Given a set of training instances, the parameters of the functions fc
are estimated as πc = nc

l , where nc is the number of training instances
of class c, μc = 1

nc
∑ci = cxi and the common variance∑=∑c2C∑ci=

c(xi−µc) (xi–µc)T /(l− |C|).

3.4.2. Decision trees
Decision trees (DT) recursively partition ℝn into axis-parallel

hyper-rectangles such that each of the final partitions represents a
single class c2C. Given a set of training instances, it selects a feature
j2{1,…,10} and cutoff value τ which splits the data into two sets:
those instances for which X1={x| x(j)≤τ} and those for which X2=
{x|x(j)Nτ}. The choice of feature j and value τ is made by minimizing
somemeasure of impurity of sets X1 and X2 with respect to the classes
of the points in each set. A commonly used measure is the Gini index
defined as G(X)=∑c2C pc(1−pc) where pc is the proportions of
instances in X of class c. Feature j and cutoff c are chosen to maximize
G(X)−(G(X1)+G(X2)), where X is the current set of training
instances. Once the set of instances are split into sets X1 and X2,
decision trees are recursively built on X1 and X2, until some stopping

criterion is met, usually a threshold of impurity, or a threshold on the
minimum number of training instances in a sub-tree. In a post-
processing step, partitions are heuristicallymerged using a complexity
reduction criterion (this is usually called pruning) to avoid over-fitting.

3.4.3. Support vector machines
Support vector machines (SVMs) directly optimize a trade-off of

accuracy on the training instances and function complexity and are
usually defined for binary classification tasks, C={−1,+1}. It is
easiest to understand SVMs in the linear setting, where the decision
functions fc are linear in the feature vectors x, and arg maxc fc(x)=
sign(wT x−γ) for some vector w2ℝn and scalar γ to be estimated.
Notice that w and γ define a hyperplane, such that wT x−γN0
corresponds to class +1 andwT x−γb0 corresponds to class −1. The
notion of complexity in this case is given by the margin of vector w
defined to be the sum of the distances between the hyperplane
defined by w and γ and the nearest training instances of each of the
two classes. It can be shown that this margin is given by 1

j jw j j22
. The

larger the margin, the less over-fitting will occur.
The optimization problem to solve is then

min
w∈ℝn ;γ∈ℝ

‖w‖
2
2 + v∑

l

i=1
ð1−ciðw

Txi−γÞÞþ; ð1Þ

where (a)+ =max{a,0}. For training instance i, ci(wT xi−γ)b0 if sign
(wT xi−γ)≠ci, i.e. if instance i is misclassified. In that case, w and γ

Fig. 3. Spectrograms of all (a) amphibian and (b) bird species included in this study.
Boxes around calls were used to calculate call variables.

Fig. 2. Average and standard deviations for (a) minimum and maximum frequencies
and (b) call duration of all amphibian and bird species identified in this study.
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are penalized by 1+ci(wT xi−γ). On the other hand, if ci(wT xi−γ)N
0 then w and γ are penalized by ci(wT xi−γ) if ci(wT xi−γ)b1. v is a
user-supplied parameter that trades-off complexity ||w||22 and error on
the training instances. This problem can be readily solved by existing
quadratic programming solvers.

Non-linearity in SVMs is achieved by assuming that decision
functions have the form f(x)=h(x)−γ where h is a function in a
Reproducing Kernel Hilbert Space H (a generalization of Euclidean
space), with corresponding kernel function k (a generalization of
the dot product in Euclidean Space). The problem to optimize
becomes

min
h∈H;γ∈ℝ

‖h‖2H + v∑
l

i=1
ð1−ciðhðxiÞ−γÞÞþ: ð2Þ

By the Kimeldorf-Wahba theorem (Kimeldorf and Wahba,
1971), the minimizer of Eq. (2) has a representation as a finite
linear expansion in terms of kernel function k evaluated at the

training instances, such that h(x)=∑i=1
l αik(xi,x) with coeffi-

cients αi to be estimated. The resulting optimization problem is
again quadratic and the same solvers as in the linear case may be
used. In practice, the user selects kernel function k, which in turns
defines the corresponding space H, in advance. In this paper we use
the Gaussian kernel k(xi,xj)=exp{−σ || xi−xj || 22}, where σ is some
user-selected parameter. Parameters σ and v are usually selected by
some form of cross-validation. We describe our choice for this paper
below.

To use SVMs in multicategory classification, where |C|N2 as
is our setting, we used the one-vs-one majority vote heuristic
(Kreßel, 1999). In this case, an SVM is trained for each pair of
labels, giving jC j

2

! "
SVMs, which are then combined by majority

vote. That is, given a new feature vector xnew, each SVM votes by
classifying the new vector as belonging to one of two classes. The
new vector is then classified as belonging to the class that
receives the most votes. Although this is not guaranteed to
converge to the optimal classifier (Lee et al., 2004), it performs
well in practice.

4. Experimental setup

All experiments were carried out in R 2.7.0 (R Development Core
Team, 2007). Performance statistics were estimated with ten-fold
cross-validation, where folds were created at random while preserv-
ing class proportions in each fold (Fig. 1).

4.1. LDA

We used the LDA classifier implemented in the MASS 7.2-41
package (Venables and Ripley, 2002) with parameter estimates
defined as in Section 3.4.

4.2. Decision trees

For decision trees we used the rpart 3.1-41 package (Therenau
et al., 2007) with defaults: the gini criterion defined in Section 3.4 was
used to create the tree although weighted for each class by the inverse
proportion of instances in the training set; maximum recursion depth
is 30; smallest node size is 20. Other defaults can be verified in the
package documentation. A complexity parameter is used to avoid
over-fitting by pruning subtrees that do not improve the gini index by
more than a factor of 0.01.

4.3. SVM

We used the kernlab 0.9-5 (Karatzoglou et al., 2004) package's
interface to libsvm (Chih-Chung and Chih-Jen, 2004) to fit SVMs,
which uses the one-vs-one strategy for multicategory classification
described in Section 3.4. The Gaussian kernel defined in Section 3.4
was used with parameter σ selected using the heuristic described
in (Caputo et al., 2002). Trade-off parameter v was selected for
each fold independently by grid-search by minimizing error on a
held-out tuning set. The loss term in Eq. (2) was weighted for
each class by the inverse proportion of instances in the training
set.

5. Results and discussion

5.1. Results

The choice of classification method showed a much greater effect
on the accuracy of the system compared to the effect of call
representation. Overall, there was a N20% difference between the
overall true positive rates of LDA and SVM (F=8.91, P=0.001),
while the difference between 4 and 11 input variables had an overall

Fig. 4. We calculated 12 variables for each call: minimum and maximum frequencies,
maximum power, call duration (a) and the frequency of maximum power in eight
segments of the call (b). We tested two ways of representing each call. In the first
method, we used four standard call characteristics (minimum and maximum
frequencies, maximum power and call duration). In the second method we used
minimum and maximum frequencies, call duration and the frequency of maximum
power in eight segments of the call.
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effect of b1% (F=0.074, P=0.786; Tables 1–3). Despite the small
overall effect, the call representation of 11 variables was more
accurate for most species and classification methods, thus for
simplification purposes, the comparisons of classification methods
made below will refer to results from training with calls character-
ized by 11 variables. The SVM (Table 3) had the highest average true
positive rate (94.95%) and the lowest average false positive rate
(0.94%) followed by DT (average TP=88.20% and FP=1.25%;
Table 2) and LDA (average TP=71.45% and FP=1.98%; Table 1).
SVM true positives varied from 86.99 to 100% depending on species
and false positives from 0.00 to 1.62%. SVM had the highest true
positive rate for all species. Moreover, this algorithm had positive
rate N90% for all species except E. antillensis. Thus it was the most
accurate classification algorithm overall (Table 3). An examination
of a confusion matrix of the actual and predicted classification by
SVM shows that the two species most often confused are E. coqui
and E. portoricensis (Table 4). Most of the remaining errors respond
to confusion between species with similar minimum and maximum
frequencies (Table 4, Fig. 2).

The LDA had the highest variability of true (0.00 to 99.99%) and
false positive (0.00 to 20.83%) rate. This algorithm performed poorly
identifying E. portoricensis, E. antillensis and Loxigilla portoricensis

with true positive rate b50%. However, it had true positive rate N90%
for E. wightmanae, E. richmondi, E. gryllus, Patagioenas squamosa and
Coereba flaveola. Moreover, Patagioenas squamosa was identified
with true positives of 100.00% and false positives of 0.00%. In addition
the LDA had a true positive rate of 99.84% identifying E. coqui, but its
false positive rate of 18.41% was the highest for all species and
classification methods (Table 1).

The DT true positive rates varied from 76.94 to 99.44% and false
positive rates from 0.02 to 3.98%. This algorithm had true positive rate
N90% for E. hedricki, E. locustus, E. gryllus, Patagioenas squamosa, and
Coereba flaveola.

Call representation using 11 variables (minimum and maximum
frequencies, call duration and the frequency in the highest energy
point in eight segments of the call) had slightly higher true positive
rate in all classification algorithms in comparison with the 4 variables
method (minimum and maximum frequencies, call duration and
maximum power), but this difference was not statistically significant
(F=0.074, P=0.786). Overall species average true positive rate in the
LDA increased from 69.89% to 71.45%, in the DT from 89.00% to 89.20%
and in the SVM from 93.80% to 94.95%. True positive rate for many
species increased when using 11 input variables, however, true
positive rate also decreased for some other species in all classification

Fig. 5. Graphical examples of the threemachine learning algorithms compared in this study. They show the decision functions fc used to distinguish Loxigilla portoricensis and Coereba
flaveola. Note that for simplification the figures only show two species and two variables (minimum and maximum frequencies). The actual system was trained/tested with 12
species and used 4 or 11 variables.
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methods. For example, the true positive rate of LDA classification of
E. coqui, E. unicolor and E. richmondi decreased from 99.99 to 99.74%,
from 78.71 to 72.21% and from 98.85 to 94.08% respectively. The DT
true positive rate of E. wightmanae decreased from 89.92 to 84.96%,
E. richmondi decreased from 96.81 to 88.7%, and Coereba flaveola
decreased from 96.87 to 93.08%. In the SVM, true positive rate for
E. coqui decreased from 97.34 to 96.38%, E. unicolor decreased from
94.70 to 90.63%. Although the average true positive rate increase for
each method was low (~1%) there were significant increases in
classification accuracy for some species in all three classification

Table 2
Average and standard deviation of percent accuracy of decision tree (DT) in identifying
nine Eleutherodactylus frogs and three bird species.

Species True positive (%) False positive (%)

Eleutherodactylus coqui 86.27±2.33 1.64±0.79
(N=4641) 85.58±1.58 1.64±0.48
E. portoricensis 87.07±7.03 4.58±1.04*
(N=857) 82.07±5.94 3.68±0.67*
E. antillensis 85.09±9.91 1.42±1.07
(N=196) 83.22±10.84 0.80±0.47
E. hedricki 93.96±6.27 0.72±0.26
(N=320) 93.45±5.97 0.57±0.32
E. wightmanae 89.92±5.52* 1.72±0.46
(N=769) 84.96±3.14* 1.63±0.53
E. unicolor 68.25±5.16** 0.95±0.54
(N=1052) 76.94±7.37** 1.23±0.32
E. richmondi 96.81±2.15*** 0.02±0.06
(N=663) 88.77±3.83*** 0.16±0.38
E. locustus 98.75±3.95 0.82±0.39
(N=128) 94.60±13.62 1.02±0.39
E. gryllus 96.64±9.00 0.17±0.16
(N=254) 99.17±2.64 0.23±0.16
Patagioenas squamosa 99.50±1.58 0.00±0.00**
(N=260) 99.44±1.76 0.02±0.02**
Loxigilla portoricensis 67.59±19.54*** 1.96±1.02**
(N=191) 89.14±7.82*** 3.98±1.26**
Coereba flaveola 96.87±1.83* 0.25±0.29*
(N=730) 93.08±4.24* 0.04±0.08*
Total average 4 var 89.00±10.99 1.19±1.27
Total average 11 var 89.20±6.97 1.25±1.33

The first line of the values for each species represents the result using the 4 input
variables (minimum and maximum frequencies, call duration and maximum power)
the second line represents the result using the 11 input variables (minimum and
maximum frequencies, call duration and the frequency in the highest energy point in
8 segments of the call) Cells marked with an asterisk (*) have t-test statistical
difference between 4 and 11 input variables of Pb0.05, those with ** Pb0.01 and
those with *** Pb0.005.

Table 1
Average and standard deviation of percent accuracy of linear discriminant analysis
(LDA) in identifying nine Eleutherodactylus frogs and three bird species.

Species True positive (%) False positive (%)

Eleutherodactylus coqui 99.99±0.22* 20.83±2.24
(N=4641) 99.74±0.33* 18.41±2.17
E. portoricensis 0.00±0.00 0.00±0.00
(N=857) 0.33±1.05 0.04±0.11
E. antillensis 0.00±0.00*** 0.03±0.07
(N=196) 31.24±13.40*** 0.05±0.08
E. hedricki 64.81±10.91 0.17±0.21
(N=320) 71.09±12.34 0.42±0.18
E. wightmanae 93.29±4.09 2.39±0.41
(N=769) 95.39±3.84 2.94±0.85
E. unicolor 78.71±4.41* 0.70±0.38
(N=1052) 72.21±6.15* 0.88±0.41
E. richmondi 98.85±1.94** 0.79±0.47
(N=663) 94.08±5.02** 0.80±0.36
E. locustus 51.01±22.53 0.03±0.07
(N=128) 53.03±18.34 0.00±0.00
E. gryllus 100.00±0.00 0.22±0.11
(N=254) 100.00±0.00 0.22±0.13
Patagioenas squamosa 97.85±2.89* 0.02±0.05
(N=260) 100.00±0.00* 0.00±0.00
Loxigilla portoricensis 45.89±9.42 0.03±0.04
(N=191) 46.51±12.64 0.05±0.08
Coereba flaveola 96.26±2.07* 0.05±0.09
(N=730) 93.76±2.53* 0.05±0.12
Total average 4 var 69.89±37.50 2.11±5.94
Total average 11 var 71.45±32.54 1.98±5.24

The first line of the values for each species represents the result using the 4 input
variables (minimum and maximum frequencies, call duration and maximum power)
the second line represents the result using the 11 input variables (minimum and
maximum frequencies, call duration and the frequency in the highest energy point in
8 segments of the call) Cells marked with an asterisk (*) have t-test statistical
difference between 4 and 11 input variables of Pb0.05, those with ** Pb0.01 and
those with *** Pb0.005.

Table 4
Confusion matrix showing the accuracy of the SVM in the classification of 9 amphibian
and 3 bird species calls based on 11 call variables.

This is the result of one of ten iterations that were made with 10% of the data (i.e. 1351 calls).
Rows represent model classification while columns represent the actual identity of the
call. Correct identifications are indicated on the diagonal. EC: E. coqui, EP: E. portoricensis,
EA: E. antillensis, EH: E. hedricki, EW: E. whightmanae, EU: E. unicolor, ER: E. richmondi,
EL: E. locustus, EG:E. gryllus, PS:Patagioenas squamosa, LP: Loxigilla portoricensis, CF:Coereba
flaveola.

Table 3
Average and standard deviation of percent accuracy of support vectormachine (SVM) in
identifying nine Eleutherodactylus frogs and three birds species.

Species True positive (%) False positive (%)

Eleutherodactylus coqui 97.34±0.76* 3.34±1.35***
(N=4641) 96.38±1.07* 1.62±0.77***
E. portoricensis 80.63±6.39*** 1.12±0.26*
(N=857) 90.13±4.43*** 1.70±0.70*
E. antillensis 84.78±8.62 0.20±0.17
(N=196) 86.99±9.04 0.25±0.20
E. hedricki 95.41±5.25 0.27±0.09
(N=320) 96.04±5.10 0.25±0.16
E. wightmanae 95.02±3.15 0.51±0.41
(N=769) 96.18±1.41 0.80±0.48
E. unicolor 94.70±4.47** 0.35±0.74
(N=1052) 90.63±1.06** 0.39±0.22
E. richmondi 98.52±1.72 0.06±0.08
(N=663) 99.35±1.06 0.04±0.08
E. locustus 91.19±10.93 0.07±0.09
(N=128) 94.24±7.66 0.03±0.07
E. gryllus 100.00±0.00 0.00±0.00
(N=254) 100.00±0.00 0.00±0.00
Patagioenas squamosa 99.38±1.98 0.02±0.05
(N=260) 100.00±0.00 0.00±0.00
Loxigilla portoricensis 89.12±13.62 0.22±0.16
(N=191) 90.33±6.86 0.13±0.13
Coereba flaveola 99.47±0.85 0.04±0.08
(N=730) 99.18±1.35 0.14±0.16
Total average 4 var 93.80±6.22 0.52±0.45
Total average 11 var 94.95±4.47 0.94±0.61

The first line of the values for each species represents the result using the 4 input
variables (minimum and maximum frequencies, call duration and maximum power)
the second line represents the result using the 11 input variables (minimum and
maximum frequencies, call duration and the frequency in the highest energy point in
8 segments of the call). Cells marked with an asterisk (*) have t-test statistical
difference between 4 and 11 input variables of Pb0.05, those with ** Pb0.01 and
those with *** Pb0.005.
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algorithms. For example, in the LDA, true positives for E. antillensis and
Patagioenas squamosa increased from 0.00 to 31.24% and from 97.85 to
100.00% respectivley. In the DT, E. unicolor increased from 68.25 to
76.94% and Loxigilla portoricensis increased from 67.59 to 89.14%. In
the SVM true positive rate for E. portoricensis increased from 80.63 to
90.13% (Table 3).

Similarly to true positives, false positives for many species
decreased with an increase in input variables in all classification
algorithms, but there were also significant increases in false positive
detections. For instance, in the LDA false positive detections increased
in E. hedricki and E. wightmanae from 0.17 to 0.42% and from 2.39 to
2.94% respectively. In the DT, the false positive rate for Patagioenas
squamosa increased from 0.00 to 0.02 and for Loxigilla portoricensis
increased from 1.96 to 3.98%. There were no significant increases in
false detections in the SVM. There were no significant decreases in
false positive detections in the LDA, however in the DT E. portoricensis
there was a decreased from 4.58 to 3.68% and Coereba flaveola
decreased from 0.25 to 0.04%. In the SVM significant decreases in false
positive detections were found for E. coquiwhich decreased from 3.34
to 1.62%.

5.2. Discussion

The threemost important characteristics of this study include (1) the
large amount of call samples (10,061) available to train/test the system,
(2) the small number of variables used to represent each call and (3) the
higher accuracy (N90% for most species) of the support vector machine
in comparison to the other classification algorithms.

Even though the discrimination of species with similar calls is an
important problem when automating species classification by sound
using machine learning, decreasing the amount of data used in each
sample to train the system is an important issue. This is especially
important when the training samples are high quality sound
recordings that may include thousands of data points (e.g. 44100/s)
(Skowronski and Harris, 2006; Oswald et al., 2007; Trifa et al., 2008).
In this study, four standard call variables (minimum and maximum
frequencies, call duration and maximum power) were enough for the
SVM to accurately identifymost species, however true positive rate for
E. portoricensis increased from 80.63 to 90.13% when the call was
represented by 11 variables. E. coqui and E. portoricensis have similar
minimum and maximum frequencies, thus the inclusion of a coarse
representation of call structure (i.e. the frequency of maximum power
in eight segments of the call) became an important factor that helped
the SVM discriminate between these species (Figs. 2 and 3).

Frog calls are usually simple in terms of call structure (Drewry and
Rand, 1983) and their calling frequencies overlap less than birds
(Fig. 3). These acoustical characteristics of the frog community aided
our automated classification process. For instance, most of the frog
species included in this study were accurately classified with only 4
variables because of little overlap between the combined character-
istics (i.e. minimum andmaximum frequencies, maximum power and
call duration) of calls. Even though Coereba flaveola, and Patagioenas
squamosa had unique values of maximum frequency and minimum
frequency respectively, bird calls are usually more complex and few
will call in an exclusive bandwidth of frequencies. Thus, we expect
that the 11 variable classification method will be more useful in sites
with high diversity of birds which have more complex calls.

The addition of more variables to characterize each call (4 vs 11
variables) did not always improve the classification. In these cases, the
additional variables may increase the similarities between species
decreasing the classification accuracy. However, in the case of SVM,
these decreases were minimal (b1% true positive decrease and b0.6%
false positive increase) if compared to the increases in classification
accuracy for E. portoricensis (9.5% true positive increase). Never-
theless, characterizing each call with only 11 variables is a significant
reduction in the amount of training data, and in this case, were

enough for the SVM to accurately discriminate between a highly
variable dataset of acoustical signals.

We tested three machine learning methods (LDA, DT and SVM) for
the automated classification of amphibian and bird calls and SVMwas
the most accurate and precise method (high true positives N90% and
low false positives b1.5%). Amajor difference between LDA and SVM is
that model decision functions are nonlinear functions. This non-
linearity is especially important when discerning between two
very similar classes in terms of call features. For instance, E. coqui
and E. portoricensis have very similar call structure (Fig. 4), but E. coqui
in the mountains has a lower minimum frequency and longer call
duration than E. portoricensis (Drewry and Rand, 1983). The LDA
performed poorly in discerning between these species with an
average true positive for E. portoricensis of 0.33% and average false
positive for E. coqui of 18.41%. The LDA restriction on functions to be
linear is the main reason for this poor classification.

Support vectormachines have proven to be successful in a number of
varied settings showing high discrimination accuracy. In addition to
being the most accurate method for the classification of bird and
amphibian calls in comparison to LDA and DT, it has been demonstrated
to be themost accuratemethod in image classification in comparison to
neural network, decision trees, naive Bayes and k-nearest neighbor (Tan
et al., 2008). It has also been tested against artificial neural networks for
drug classificationwith similar results (Byvatov et al., 2003). In addition,
SVM has been more accurate thanmaximum likelihood classifier in the
classification of Landsat ETM+images (Sanchez-Hernandez et al.,
2007). The non-linearity of the function in vector x is one of the
principal characteristics of the SVM that gives it advantage over other
methods. However, this increased representationpower is balanced bya
complex control method which has the effect of making the decision
functions depend only on the support vectors. Thus, the effort required
to classifynewcalls canbe ameliorated since onlya subsetof the training
set needs to be stored.

Even though SVM outperformed DT and LDA for most species,
these other linear methods were accurate classifiers for some species.
For example, Patagioenas squamosawas classified by LDA and DT with
an average accuracy of 100.00% and 99.44% respectively. This species
had the lowest minimum frequency of all thus it was easy for these
classifiers to use this variable to accurately discriminate it from the
others (Fig. 4). Similarly the high accuracy of LDA classifying Coereba
flaveola and E. gryllus is explained by their unique ranges of mini-
mum frequency (6636–8032 Hz for C. flaveola and 6170 - 6563 Hz for
E. gryllus). E. richmondi was also accurately discriminated by this
linear method, but in this case this species had unique ranges of call
durations (0.08–0.10 s). Therefore in some settings LDA and DT can be
used in accurate systems that are extremely efficient to deploy.

6. Conclusion

We compared three machine learning algorithms (LDA, DT and
SVM) for the automated classification of bird and amphibian calls. The
SVM had the highest accuracy (highest true positive and lowest false
positive rates) for most of the species. SVM, as well as other machine
learning algorithms, requires large amounts of data to be trained to
attain high levels of accuracy. Training SVM with digital sound files
(which may contain thousands of data points) results in a computa-
tionally demanding method, however, we provide an alternate
method of training data reduction that characterizes each species
with 11 call variables (minimum frequency and maximum frequency,
maximum power, call duration and frequency in the highest energy
point in 8 segments of the call). This efficient data reduction technique
in conjunction with the high classification accuracy of the SVM is a
promising combination in automated species identification by sound,
which if coupled with ADRS can increase the temporal and spatial
coverage of biodiversity data collection.
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